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1 Introduction

Background

The fate and transport of explosives through porous media have become of
greater concern recently, partly because of the increased number of military
installation closings. Many of these installations were involved in the manu-
facture or packing of munitions, thus requiring various explosives to be pro-
duced, transported, stored, and disposed onsite. At many of these munitions
plants, subsurface migration of explosives poses a potential threat to ground-
water resources. Containment and remediation efforts are underway at many
of these sites. ‘

One of the most common explosive compounds found at military installa-
tions is 2,4,6-trinitrotoluene (TNT). The information available on subsurface
TNT transformation and sorption is inadequate for accurate transport or remed-
iation modeling. Because such models are used for planning containment and
remediation measures, additional research conceming TNT sorption and trans-
formation in soils is needed.

Process Overview

Many processes affect the fate and transport of TNT in soils and ground-
water (McGrath, In Preparation). These processes include, but are not limited
to, convection, hydrodynamic dispersion, biodegradation, abiotic transforma-
tions, soil sorption, facilitated transport by organic and inorganic colloids,
dissolution, and diffusion.

Transformation

Transformation of TNT (Figure 1) has been well documented (McCormick,
Feeherry, and Levinson 1976; Kaplan and Kaplan 1982b; Myers et al., In
Preparation). Myers et al. (In Preparation) performed continuous-flow TNT
experiments in soil columns that were 15.24 cm in length and found that the
majority of the TNT introduced to the columns disappeared before reaching the
column outlets. Much of this disappearance was attributed to transformation.

Chapter 1 introduction
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Figure 1.  TNT transformation pathway diagram (from McGrath, In Preparation)

All of the products shown in Figure 1 are reduction products. Several
researchers (McCormick, Fecherry, and Levinson 1976; Kaplan and Kaplan
1982b; Myers et al., In Preparation) have observed TNT transformations to the
products 2-amino-dinitrotoluene (2A-DNT), 4-amino-dinitrotoluene (4A-DNT),
2,6-diamino-4-nitrotoluene (2,6-DANT), and 2,4-diamino-6-nitrotoluene (2,4-
DANT). Less information is available on TNT transformation to azoxytol-
uenes. Kaplan and Kaplan (1982a) found that the 4A-DNT pathway is favored
as opposed to the 2A-DNT pathway. TNT has been shown to undergo reduc-
tive transformation under both aerobic and anaerobic conditions (McCommick,
Feeherry, and Levinson 1976; Kaplan and Kaplan 1982b; Pennington and
Patrick 1990).

It is unclear whether TNT transformations are primarily biotic, abiotic, or a
combination (McGrath, In Preparation). If the transformations occurring are
primarily abiotic, then the key soil constituent(s) causing transformation may
be exhausted if enough contaminant is introduced to the soil. On the other
hand, abiotic soil constituents may be biologically regenerated. Ainsworth et
al. (1993) speculate that iron porphyrins and quinones might act as electron

Chapter 1 Introduction
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ments, generally are used to estimate sorption parameters such as distribution

regenerated under reduced conditions.

component depending on specific conditions.

&

Ainsworth et al. (1993) observed some TNT transformation in sterilized
soils, though not as much as in unsterilized soils. The ability of both sterilized

and unsterilized soils to transform TNT and the fact that TNT transforms under

Equilibrium sorption isotherms, which are determined from batch experi-

donors in the reduction of nitro groups and that the electron donors might be

both aerobic and anaerobic conditions suggest that TNT-transformation reac-
tions involve both biotic and abiotic components, with the significance of each

coefficients (K;). Many complicated isotherms have been proposed, but most

sorption data tend to fit linear, Freundlich, or Langmuir isotherms (Tchobanog-
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found that TNI

i1
1 .1

~

s

1594)

s

iim and iskandar

. e vry
3 o

therm best fit their data. For the soil column experiments of Ainsworth et al.

Leggett (1985) suggested a dual component TNT sorption isotherm, fitting a

*

T

1igh-TNT concentration data. Se

A specific isotherm type has not been generally accepted for TNT sorption.

Pennington and Patrick (1990) fit batch TNT data for 16 soils to each of the

(1993), the Freundlich sorption model provided the best fit for TNT data.
Langmuir isotherm to low-TNT concentration data, and a linear isotherm to

three previously mentioned isotherm types and found that the Langmuir iso-

lous and Schroeder 1985).

™
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systems can be modeled as one of ms will
rigorously satisfy all of the assumptions associated with any type of reac-
tor. In some cases, two or more types of reactors may be needed to describe
the total system.

tems will

Large length-to-diameter soil columns are often used in laboratory studies
of contaminant transport in soils. These columns are usually modeled as
advection-dispersion reactors. Advection-dispersion reactor models are com-
plicated models that account for mixing along the column length.

Continuous flow experiments have been conducted using small length-to-
diameter (thin-disk) soil columns (Skopp and McCallister 1986; Hinz 1992).
One advantage that thin-disk columns have over traditional columns is that if
the Iength of soil is small compared with the diameter, the column can be
modeled as a complete-mix reactor. Therefore, hydrodynamic dispersion can

PR .2 L. ¥_ P, S A et e . . _ [e a2 B 12 al " ~ . . 21
OIC, NIy reacuve Conaminants sucn as 1.N1 may transiorm 1nto otner
svmm s mtn bafacn alecelen o fomen o Voo Vo al e A e 1 1. L 3 9 2A7C TR L
proaucty UCIVIT Cluullg 110il 4 141gC 1ICNZLI-10-A1 CLCT SO11 COLUIIIL. will Ul
disks, the contaminant residence time inside the reactor is shortened, increasing
the chances of breakthrough. The shorter residence time also reduces the time
needed to conduct breakthrough type studies, which may be important in some
cases.

. L]
Ohiactivee
- -'vv-l W Wy

The objectives of this study were to obtain TNT breakthrough curves and
estimate TNT transformation and sorption parameters.

Supporting objectives were as foliows:

_ M tnrea olae Lo mel e ® ol a2 o omema . . Lol Y Lt at o _a%.

« To test the hypothesis that soils contain an exhaustible abiotic constitu-
Aot sesneamen s n £ wn oy Frn orenn o ds snam oy
entr S pOT ible for TNT transform tions

¢ To determine the effects of holding times on TNT stability in column
alnat amnla



Soils

Table 1

Soll Properties

% Clay

0
[

34.0

% Silt

o
[«
[o}}

64.0

75

% Sand
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o~

20

92.5

CEC?

<t
(Y]

--

38.9

e

% TOC!
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i)
[«

2.400

£

pH

@
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53

£33

Soll

Yokena clay

Ottawa sand
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Figure 5.  Thin-disk schematic and experimentai apparatus

In large length-to-diameter columns, the usual column loading procedure is
to hand-pack the soil in increments and scarify the surface to minimize bed-
ding planes. Hand-packing was found to be impractical for thin-disk columns
Therefore, another loading procedure was developed.
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Soils were placed in the columns as slurries, and water was allowed to
drain by gravity. In order to keep soil particles from being trapped in the
column threads during this process, an insert, which was a 6.5-cm-long poly-
vinyl chloride pipe with exterior threads, was designed to protect the column
threads. Soil loading was found to be a trial and error process, and the slurry
density had to be adjusted for each soil.

ES-silt needed for a 0.32-cm soil layer was estimate
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ral times until a .
insert was removed, and the soil left on the
inside of it was rinsed i eaker used for the slurry transfer. This beaker
was then placed in an oven at 110 °C and dried until all the water was evapo-
rated. It was then weighed on an analytical balance. The soil mass in the
column was calculated by difference.

Yokena clay

As with the WES-silt, the mass of Yokena clay needed to give a 0.32-cm
soil layer was estimated using specific gravity, water content, and an assumed
porosity (0.65). This was calculated to be 4.88 g. On the first loading
attempt, an 8:1 water to soil ratio was used, and the slurry was transferred to
the column using the same procedure as with the WES-silt soil. The siurry
was allowed to gravity drain, which took approximately 75 min. Upon inspec-

tion, it was noted that the clay apparentiy had sweiled, making the soil iayer

thicker than the desired 0.32 cm. The same procedure was followed in a sec-
ond loading attempt. The water took longer to drain, but the results were
similar to the first loading attempt. Loading was also attempted using a slight
vacuum to remove water. This procedure produced an uneven surface on the
soil layer.

Because of the swelling, various amounts of soil were used in order to get a
0.32-cm layer. After several attempts, it was determined that approximately
3.8 g of soil were needed. However, a smooth, even layer was still not
achieved. Therefore, using about 3.8 g of soil, the water to soil ratio was
change m 8:1 to approximately 10:1. The slurry was placed on a stir plate

]
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transferred to the column as before. A smooth, even layer was obtained using
the 10:1 water to Yokena clay, 4 hr of stirring, and gravity drainage.
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0.32 cm thick. The mass of soil added was reduced to 8.0' g, énd :; éfnooth,
even layer at the desired thickness was obtained.

Contaminated feed solution was prepared using field-contaminated soil from
the Naval Surface Warfare Center in Crane, IN. The soil (labeled Crane
Sifter-Conveyor) contained a TNT concentration of approximately 1,500 mg/kg
(Pennington et al. 1995). Two batches were prepared during the project

Crane Sifter-Conveyor soil (250 g) and distilled-deionized (DDI) water

(500 ml) were placed in a 1,000-ml, high-density polyethylene bottle. Four
soil-water suspensions were prepared. The bottles were taped shut, placed in a
tumbler, and tumbled for approximately 18 hr at 25 rpm.

After tumbling, the soil-water suspensions were centrifuged at 4,000 rpm in
a bucket centrifuge (Model PR-7000, International Equipment Company, Need-
ham Heights, MA) for 30 min. Supematants were decanted and centrifuged
again at 9,000 rpm in a bench centrifuge (Model SS-3 automatic, Sorvall, Inc.,
Newtown, CT) for 30 min. Finally, the supernatant was filtered through a
0.45-um membrane filter (Type HA, Millipore Corporation, Bedford, MA).

Filtrates were combined into two amber-colored glass jars. A 5-ml aliquot
was pipetted from each jar and preserved with an equal amount of acetonitrile
for a reference standard. Both the preserved samples and the contaminated
feed solution were stored at approximately 4 °C. Contaminated feed solution

ampies w reserved for analysis periodicaily throughout the course of the
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Thin-Disk Column Tests
Breakthrough curves

DDI water was pumped (upflow mode) through three soil columns (WES-
silt, Yokena clay, and Onawa sa_nd) us 'ng go_*,a,n_:- olume met cring pumps

were obtamed (approxxmatel_y 1.8 to 2.3 ml/hr). When these flows were
achieved, the pumps were stopped, and DDI water was replaced with contami-
nated feed solution. The pumps were restarted with the contaminated feed
solution. Column operating parameters and average feed solution concentra-
tions are shown in Tables 2 and 3.

ahla 92
1AMV &
Column Operating Parameters
Column vi, em/s %, glem® nd sG*
WES-silt 496 x 105 0.888 0.65 254
Yokena clay 561 x 10 0.719 0.73 2.67
Ottawa sand 9.44 x 10°° 1.610 0.40 2.68
! Average pore water velocity
2 Bulk density.
® Porosity.
* Spedific gravity.

Table 3
Average Feed Solution Concentrations (mg/¢)
Parameter’ WES-SIit Yokena Clay Ottawa Sand
TNT 3.2 3.2 58.8
HMX 247 247 2.18
RDX 336 336 30.9
TNB 0.27 0.27 | o184
DNB <0.02 <0.02 <0.02
TETRYI <0.05 <0.05 <0.05
4A-DNT 0.145 0.145 0.110
2A-DNT 223 223 1.97
2,6-DNT <0.020 <0.020 <0.020
24-DNT 0.028 0028 0.026
AZOXY <0.100 <0.100 <0.100
3,5-DNA 0.054 0.054 0.051
2,6-DANT <0.100 <0.100 <0.700
2,4-DANT <0.200 <0.200 <0.200

! See Appendix B for full chemical names.

Chapter 2 Materials and Methods



Contaminated feed solution was pumped through the WES-silt and Yokena
clay columns for step inputs of 160 and 211 pore volumes, respectively (284
and 329 hr, respectively). Contaminated feed solution was pumped through
the Ottawa sand column for a step input of 51 pore volumes (48 hr).

After the step inputs of contaminated feed solution were applied to the
columns, the pumps were stopped, and contaminated feed solution was
replaced with DDI water. The pumps were restarted with DDI water that was
pumped through the WES-silt and Yokena clay columns for 100 hr (56 and
66 pore volumes, respectively). DDI water was pumped through the Ottawa
sand column for 68 hr (75 pore volumes). The pumps were stopped, and the
columns were sealed after the addition of DDI water.

All column tests were performed at room temperature (18 to 24 °C).

Pause in flow

After allowing each of the sealed soil columns to sit undisturbed for
8 weeks, DDI water was again pumped through the columns for an additional
24 hr in order to investigate rate-limited desorption. Afterwards, the pumps
were tumned off, and the columns were disassembled. The entire soil layer was
taken from each soil column for analysis.

Blank column

In addition to the previous soil column experiments, an empty column
(blank) experiment was performed. DDI water was pumped through the blank
column until a target flow was achieved (1.9 ml/hr). When this flow was
achieved, DDI water was replaced with contaminated feed solution, which was
pumped through the blank column for a step input of 11 pore volumes (28 hr).
The blank column experiment was ended after addition of the step input.

Sampling procedure

During the thin-disk column tests, samples were collected using fraction
collectors (Model UFC, Eldex Laboratories, Inc., Napa, CA). Samples were
collected hourly during the majority of the experiment. A portion of each
sample (1.5 ml) was spiked with an equal volume of acetonitrile for
preservation.

Holding-Time Study

Since some samples were not preserved immediately after being collected, a
study was conducted to assess the impacts of delayed preservation on TNT
concentrations in the samples. Fifteen contaminated feed solution samples

Chapter 2 Materials and Methods
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were diluted 1:10 with DDI water. These samples were placed in 20-ml amber
vials, capped, labeled, and placed on a bench top in the laboratory. Three of
the samples were preserved by pipetting 5 ml of sample into another amber
vial and adding an equai voiume of acetonitriie. T‘ne remaining sampies were

allowed to sit on the bench [Op Three more vials were pI'CSCI'VC(l cvery o hr.

ciitta csrno msacnamiad At am alamead 2leana AL

The final suite was PICSCIVEA 4l 41l €1apsCa ume O1 f 24 hr.

Samples were analyzed for 2,4,6-trinitrotoluene (TNT), 1,3-dinitrobenzene
(DNB), methyl-2,4,6-trinitrophenylnitramine (TETRYL), 1,3,5-trinitrobenzene
(TNB), 4-amino-2,6-dinitrotoluene (4A-DNT), 2-amino-4,6-dinitrotoluene
(2A-DNT), 2,6-dinitrotoluene (2,6-DNT), 2,4-dinitrotoluene (2,4-DNT), and
3,5-dinitroaniline (3,5-DNA) on two independent high performance liquid
chromatography (HPLC) systems using the dual column confirmation method
developed by Jenkins, Miyares, and Walsh (1988). The first system consisted
of a 600E system controller, a 712 Wisp Auto Injector, and a 486 Tunable
Absorbance Detector (Millipore/Waters Chromatography Division, Milford,
MA). The column was an HPLC-18 (Supelco 25 cm by 4.6 mm) column

alirtad =26l . PETY.Y 2 MRS I R e == . B L s s

eluted with 1.1 methanol/waier at 1.2 mi/min. The second HPLC system con-

sisted of an HPLC Module I (Millipore/Waters Chromatography Division,
ilford, MA). The column was an HPLC-CN (Supelco 25 cm by 4.6 mm)

Samples were analyzed for a composite of 4,2°,6,6’-tetranitro-2,4’-
azoxytoluene, 2,2",6,6-tetranitro-4,4’-azoxytoluene, and 4,4’,6,6’-tetranitro-
2,2"-azoxytoluene using the above method except that the columns were eluted
with 5.4:4.6 acetonitrile/water at 1.5 ml/min instead of 1:1 methanol/water at
1.2 ml/min.

Chloride Tracer

K
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&
[72]
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o
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33
6
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=
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i

Boston MA) that was attached at the end of the outlet tubmsz -onduc,'vity
readings were taken using a conductivity meter (Model 35, Yellow Springs
Instrument Co., Inc., Yellow Springs, OH). The conductivity curve was used
to estimate the effective hydraulic residence time of the apparatus.

Chapter 2 Materials and Methods
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The normalized WES-silt TNT BTC (Figure 6) showed that TNT con-
centrations reached steady-state after about 40 pore volumes were eluted.
Steady-state concentrations were about 95 percent of the initial concentration,
indicating the presence of a disappearance process. The shape of the curve
was approximately symmetrical, indicating reversible sorption.

The Yokena clay TNT BTC (Figure 6) also showed evidence of a disap-
pearance process. TNT concentrations reached steady-state after approximately
60 pore volumes were eluted and were about 97 percent of the initial concen-
tration. The Yokena clay TNT breakthrough curve was also approximately
symmetrical.

The Ottawa sand TNT BTC (Figure 6) showed a smaller amount of disap-
pearance than the WES-silt and Yokena clay BTCs, which is indicated by a
normalized steady-state concentration of about 0.99. The concentration was
very near steady-state after about 50 pore volumes were eluted, and the avail-
able data suggest TNT effluent concentrations would have approached steady-
state at the input concentration had the step input been longer. As with the
WES-silt and Yokena clay BTCs, the Ottawa sand TNT BTC was approxi-
mately symmetrical.

steady-state, ef‘ﬂnen t concen-

S8y ValleVaal VWWaavvas

ption with noncx_hausublc Lra_rmfonnanon. At

tration does not change with respect to time, which implies that the rate of
adsorption equals the rate of desorotlon If the steady-state effluent concentra-
tion is below the influent concentration, the difference is indicative of some

type of disappearance process. While transformation is occurring, effluent

-
w
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TNT and TNT transformation products were measured in column effluents.

).

0
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ucts exceeded their influent concentrations, indicating that TNT was trans-

formed during passage through the soiis (Figures 8, 9, an

In each of the columns, effluent concentrations of certain transformation prod-

e
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Figure 7. Normalized hypothetical breakthrough curves for complete mix

WES-silt

The WES-silt showed more TNT disappearance than the Yokena clay and
Ottawa sand. Most of this disappearance is accounted for by the accumulation
of 4A-DNT (Figure 8). This constituent reached steady-state at a normalized
concentration of about 12, indicating that 4A-DNT was being generated from
TNT. The fact that 4A-DNT reached steady-state is indicative that 4A-DNT
was being transformed to another product.

The 2A-DNT concentration also increased to a level above the influent
concentration and reached steady-state (Figure 8). The 2A-DNT steady-state
concentration is only about 1.2 on the normalized scale, rather than the 12
observed from the 4A-DNT BTC. These data suggest that the 4A-DNT path-
way was favored.

Chapter 3 Results and Discussion
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Figure 8. Normalized WES-silt transformation product breakthrough curves

As shown on the TNT transformation pathway diagram (Figure 1), the
subsequent product of 4A-DNT is 2,4-DANT, and the subsequent products of
2A-DNT are 2,6-DANT and 2,4-DANT. The 2,4-DANT and 2,6-DANT influ-
ent concentrations were below the minimum detection limits (MDLs) for these
compounds (0.200 mg/¢ for 2,4-DANT and 0.100 mg/¢ for 2,6-DANT). For

Chapter 3 Results and Discussion
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Figure 10. Normalized Ottawa sand transformation product breakthrough
curves

the purpose of plotting these BTCs, the influent concentrations of 2,4-DANT
and 2,6-DANT were assumed to be one-half of the MDLs for these com-
pounds. The 2,4-DANT and 2,6-DANT BTCs are somewhat erratic (Figure 8),
which probably reflects the difficulty of separating these two compounds by

Chapter 3 Results and Discussion



HPLC analysis. Since, for all three soils, some points on the 2,4-DANT and
2,6-DANT BTCs may actually be combinations of both of these products,
interpretation of the 2,4-DANT and 2,6-DANT BTCs is not possible.

Other possible TNT transformation products include azoxytoluenes (Fig-
ure 1). The composite azoxytoluene (AZOXY) BTC (Figure 8) showed an
initial sharp rise to a normalized concentration of about 10. The peak occurred
at about 15 pore volumes. After peaking, the AZOXY concentration decreased
throughout the remainder of the experiment. The AZOXY influent concentra-
tion was below the MDL (0.100 mg/¢). For the purpose of plotting the
AZOXY BTC, the influent concentration was assumed to be one-half of the
AZOXY MDL.

Other TNT manufacturing impurities and/or possible transformation prod-
ucts included in the chemical analysis were 2,6-DNT, 2,4-DNT, 3,5-DNA, and
TNB. None of these compounds were found to be significant TNT transfor-
mation products for any of the column tests. A summary of the effluent data
for these compounds is presented in Table 4.

Table 4
Effluent Concentrations for Selected Transformation Products (mg/t)
WES-Silt Yokena Clay Ottawa Sand
Parameter | Min' Max? Mean® Min Max Mean Min Max Mean
2,6-DNT <MDL <MDL <MDL <MDL | <MDL <MDL <MDL | <MDL <MDL
2,4-DNT <MDL 0.035 <MDL <MDL | 0.032 <MDL <MDL | 0.022 <MDL
3,5-DNA <MDL 0.064 0.038 <MDL | 0.0861 0.035 <MDL | 0.049 <MDL
TNB <MDL 0.333 0.156 <MDL | 0.300 0.115 <MDL | 0.166 0.053
AZOXY - .- <MDL | <MDL <MDL
Note: Minimum detection limits (MDLs): 2,6-DNT = 0.02 mg/t; 2,4-DNT = 0.02 mg/¢; 3,5-DNA = 0.02 mg/¢;
TNB = 0.02 mg/t; AZOXY = 0.10 mg/e.
** Data is presented in Figures 8 and 9.
! Minimum observed effluent concentration.
2 Maximum observed effiuent concentration.
3 Mean observed effiuent concentration.
Yokena clay
Although the Yokena clay soil showed less TNT disappearance than the
WES-silt soil, the transformation products showed similar behavior (Figure 9).
The 4A-DNT reached a normalized steady-state concentration of approximately
12. The Yokena clay 2A-DNT reached steady-state at a normalized concentra-
tion of about 1.2. The Yokena clay 2,4-DANT and 2,6-DANT BTCs probably
21
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indicate the difficuity in separating these two compounds by HPLC analysis, as
previously discussed.

The Yokena clay AZOXY BTC showed an initial sharp rise to a normalized
concentration of about 4, followed by a decrease throughout the remainder of
the experiment. The peak occurred at approximately 15 pore volumes
Ottawa sand

- WAl TS

Most of the transformed TNT in the Ottawa sand column was in the form

of 4A-DNT (Figure 10). The 4A-DNT BTC approached steady-state and

peaked at a normalized concentration of about 15. The Ottawa sand 2A-DNT
approached steady-state near the influent concentration, indicating that
2A-DNT was not a significant TNT transformation product in the Ottawa sand
column. The Ottawa sand 2,4-DANT and 2,6-DANT BTCs are probably
reflective of HPLC separation difficulty. The Ottawa sand AZOXY concentra-
tions were less than the MDL throughout the experiment (Table 4).

Summary

The transformation product BTCs clearly show that TNT transformations
were occurring in each of the three soiis. The reiative order of magnitude was

™~ TP

silt > c1ay > sand. For each soil, 4A-DNT was the main transformation proa-

uct. The trends in Figures 8, 9, and 10 are consisient with a nonexhaustible
traﬁsf‘n“na“on process and are generally consisient with the TNT transforma-
tion pathway (Figure 1).

l'ig.. o o ftan Flauas

r € in riow

During washout, flow to each column was stopped, and the columns were
sealed for 8 weeks. After this pause in flow, washout was restarted. For each
soil, TNT concentrations were slightly above the minimum detection limit
immediately before flow was stopped. Immediately after restarting flow, TNT
concentrations were slightly below concentrations before the flow pause (Fig-
ures 11, 12, and 13).

The stopped-flow technique produced different results for the TNT transf

m‘w-n/v—A Aaem A 1N

mation products than for the TNT (rlgurwes 11 u. and 13). Effluent 2A-DNT
ale ~

,
and 4A-DNT concentrations increased afier the flow pause in all thr
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decreased during the flow pause because TNT continued to transform to the
products 4A-DNT and 2A-DNT, as indicated by the increase in the concentra-

tions of these products.

Moie Baiance

Eluted TNT transformation products were converted to TNT equivalents on
a molar basis. Excellent mole balances were observed for all Lh,ree soil col-
umns. An account could be given for virtually all of the TNT that was
pumped into the soil column (Figure 14). Greater than 90 percent of the TNT
input to each column was eluted as TNT. The remainder of the input mass
was either eluted as TNT transformation products or remained in the soil.
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WES-siit

In the WES-silt soil column, 95.9 percent of the TNT entering the column
was eluted as TNT. No residual TNT was measured in the soil after the
experiments were ‘completed, suggesting that the TNT sorption was govermned
by a reversible process and/or the sorbed TNT had been transformed into other
products. The majority of the remaining input TNT could be accounted for as
4A-DNT (2.9 percent). The production of 2A-DNT accounted for G. o percent
of the input TNT. Other [ransrormauon products (2,6-DANT and A

togemer aCCOUHI for 0.2 percen
in

,
X
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Valkana alavw
1ORCNia Ciay
In the Yokena clav soil column, 98.1 percent of TNT mass input was eluted
in e Yoxena ciay son coiumn, ¥8.21 percent oI 1IN1 mass input was luicd
as TNT. As with the WES-silt column, the majority of remaining TNT input

was chited as 4A-DNT (460 perce J
2,6-DANT accounted for 1.4 and 0.1 percent of the input TNT, resnecnvelv
A small amount of the TNT (0 8 Dercent) was measured in the Yokena clay
soil after the washout period. The residual TNT in the Yokena clay column is
indicative of an irreversible sorption process. Overall, an account was given

for 104.4 percent of the Yokena clay input TNT (Figure 14).
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Ottawa sand

The Ottawa sand soil column effluent trends were similar to the WES-silt
and Yokena clay columns, but less transformation occurred. In the Ottawa
sand column, 98.1 percent of input TNT was eluted as TNT. As before, most

of the remaining TNT was accounted for as eluted 4A-DNT (2.9 percent).
Other transformation products (ZA-DNT and 2,6-DANT) accounted for
0.6 percent of the input TNT. Overalil, an account was given for 101.6 percent

ls 2: S t2 2002 o)

of the input TNT (Figure 14).
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Therefore exoenmental erTor is Drobablv resoon51b1e for the poor TNT mass
balance relative to the other columns.
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These results are consistent with those rpmned hv Kzn]an and Kaplan (16 82a).

Kaplan and Kaplan (1982a) found qnmllar ratios of 4A DNT to 2A-DNT. In
the study conducted here, 2,6-DANT made up between 1.1 and 2.6 percent,
and the azoxytoluene composite made up between zero and 3.0 percent. How-
ever, as stated earlier, the 2,6-DANT BTCs may actually be combinations of

2,6-DANT and 2,4-DANT.
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A compiete-mix model was developed for the thin-disk breakthrough curves
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nonlinear sorption is not needed to fit the data obtained in this study. A first-
order reaction expression was assumed for these experiments since a specific
rate law for TNT degradation has not been established.

From conservation of mass (Equation 1) and a linear sorption isotherm

(Equation 2), Equation 3 is derived for the initial condition where C(0) = 0
(see Appendix C for a compiete derivation).
OC, - OC - pnVC = nvE- + pv & (1)
dt dt
S=KC 2)
r Ve \-]
(L)
Co I | _—r‘:"*—[‘m’_ t ” (3)
C=—"F_11-¢\ « )]
1 + UH n

where
C = effluent solute concentration, mg/¢
C, = influent solute concentration, mg/¢

0y = hydraulic residence time, hr

p = transformation rate constant, hr'!

n = porosity
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before coming into contact with the soil layer and, upon leaving the soil )
must travel through an outlet before being collected for analysis. In traditional
columns, the inlet and outlet travel time is usually much smaller than the resi-

dence time in the soil and is often neglected. With thin-disk columns, the inlet

and outlet residence times are significant and therefore must be considered.
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In order to determine the total inlet-outlet (inlet plus outlet) residence time
(t,), a chloride tracer study was performed on a blank column. It was assumed
that both the inlet and outlet could be modeled as plug flow and that sorption
and degradation were not occurring in the inlet or outlet. Therefore, the
inlet-outlet residence time (z,) was measured with the tracer study, and the
model was modified to account for this travel time.
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‘ouation 4 describes solute travel thmnoh the comnlete thin-disk annaratus
zquation € ¢esCripes soiute travel through the compicte thin-gisk apparatus
during the step input of the feed solution

After the end of the feed solution step input, DDI water was pumped

through to wash out the disk. Changing the conditions at the inlet to C = 0 for
t > 1, yields:
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where
T = pore volumes eluted
L= columri‘ length, cm

= average pore water velocity, cm/s

Parameter Estimation

Equations 4 and 5 were used to fit the TNT breakthrough curves. Good fits
were obtained for each column (Figure 17) by visual inspection. First-order
TNT transformation rate constants (p) and TNT linear equilibrium distribution
coefficients (K, for each soil were estimated from the best-fitting model
parameters (Table 6).

WES-slit

The WES-silt TNT breakthrough curve was described well by the analytical
model (Figure 17). Slight discrepancies between the data and the model
occurred at the beginning of breakthrough and near the end of washout. The
model predicted earlier breakthrough and a shorter washout tail.

A transformation rate constant (u) of 0.025 hr'! was estimated for the WES-
silt TNT breakthrough curve. This rate is fast compared with most contami-
nants in groundwater. Howard et al. (1991) estimate a transformation rate
constant of 0.001 hr'! for TNT in unacclimated anaerobic groundwater. Their
estimate is based on scientific judgment rather than experimental results.
Myers et al. (In Preparation) estimate a TNT transformation rate constant for
WES-silt that is approximately an order of magnitude larger than the value
reported here.

The estimated WES-silt TNT distribution coefficient (K,) was 4.5 ¢/kg.
However, the data in this study do not provide sufficient evidence that TNT
sorption is actually governed by linear equilibrium sorption. It may be that K,
is only an adjustable parameter that can be used to obtain a better curve fit.

Yokena clay

The Yokena clay TNT curve fit (Figure 17) was similar to the WES-silt
curve fit. Again, the model predicted slightly earlier breakthrough and a
shorter tail than the observed data. However, the majority of the data was
described very well.

A transformation rate constant of 0.013 hr'! was estimated for the Yokena
clay TNT. This is roughly one-half of the value estimated for the WES-silt
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Table 6

Fitted Transformation and Sorption Parameters for TNT
Column u, hr? K 2 Ukg
WES-silt 0.025 o 45

Yokena clay 0.013 10.0

Ottawa sand 0.008 15

' First-order transformation rate constant.
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soil. The Yokena clay was higher than the WES-silt in both cation exchange
capacity (CEC) and percent total organic carbon (TOC). For Yokena clay,
Myers et al. (In Preparation) report a first-order transformation rate constant
that is an order of magnitude higher than the value reported here. The differ-
ence in first-order constants between the two experiments is possibly due to
differences in redox conditions. Although redox conditions were not moni-
tored in either experiment, the soil columns used by Myers et al. (In Prepara-
tion) were probably more anaerobic than the thin disks used in this study since
the hydraulic residence times in the Myers et al. (In Preparation) columns were
1

A Val T, Asoteila ~ ~ Py ne 1N
1€ ESUMACa YOKEna Ciay 1iN1 Qistrioution COELiiCient was iU ¥K ir
value was higher than the one for the WES-silt soil, which would be expected
since the Yokena clay is higher in TOC and CEC than the WES-silt soil.
Ottawa sand

The Ottawa sand TNT curve fit (Figure 17) is similar to the previous col-
umn fits in that there is some discrepancy between model and observed data at
the beginning of breakthrough. However, the model fit the other portions of
the data well, even near the end of washout.

The estimated transformation rate constant for the Ottawa sand break-
through curve was 0.008 hr'. This value is lower than that for the WES-silt
and Yokena clay soils, as would be expected since the Ottawa sand is over
99-percent quartz. Myers et al. (In Preparation) estimate a TNT transformation
rate constant for Ottawa sand that is approximately half of the value reported
here.

The estimated Ottawa sand TNT distribution coefficient was low (1.5 ¢kg).

Chapter 3 Results and Discussion

()
(3]



36

4 Conclusions and
Recommendations

Conclusions

Although highly simplified, the complete-mix model in conjunction with
thin-disk elution curves provides a physically based theoretical/empirical
framework for investigating TNT transformation/sorption simultaneously. The
thin-disk soil columns provided well-behaved TNT breakthrough curves that
could be simulated closely using a complete-mix model with first-order decay
and linear equilibrium sorption. Excellent mole balances were obtained (100 +
5 percent), making interpretation of transformation data reliable.

TNT transformation was observed in all three soils. TNT transformation
products were primarily reduction products resulting from transformation of
nitro groups to amino groups. Transformation of TNT to 4A-DNT was
favored over transformation of TNT to 2A-DNT.

The WES-silt and Yokena clay soils did not show evidence of an exhaust-
ible soil constituent responsible for TNT transformation. The TNT break-
through curves for these soils suggest that transformations were primarily
biotic, biologically mediated, or that an abiotic soil constituent responsible for
TNT transformations was constantly renewed.

Agreement between observed and model breakthrough curves suggests that
simple formulations of sorption and reaction in transport models for TNT will
capture the main effects of these processes, even at high solution concentra-
tions for the conditions and soils investigated. Compared with sorption, trans-
formation is a very significant process affecting TNT transport in soils.

TNT samples left unpreserved in amber glass vials at normal room temper-
ature and light show no statistically significant change in TNT concentration
over a 24-hr period. Photolysis could present a problem if TNT samples are
not preserved within 24 hr of collection.

Chapter 4 Conclusions and Recommendations



» The influence of redox conditions on TNT transformation rates and
pathways nccds to be studled ystematically befor i

* An improved understanding of the environmental controls (e.g., Eh, pH,
soil composition, and microbial activity) on TNT reaction rates is
needed to explain why TNT rapidly transforms in virgin laboratory soil
columns, yet remains in the soil profile at many sites.

* More work is needed to determine the specific soil parameters impor-
tant in TNT reduction.

nciusions and Recommendations
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Assuming first-order degradation, the conservation of mass in a complete-
mix reactor can be written for a reactive contaminant traveling through satu-

0C, - OC - pavC = nv4C L o8
) at i at

where

O = flow rate, cm>/hr

C, = influent TNT solution concentration, mg/¢
C = effiuent TNT solution concentration, mg/¢
p = transformation rate coefficient, hr
n = porosity, dimensioniess
V = disk volume, cm®
p = bulk density, mg/?

S = TNT sorbed concentration, mg/kg
t = time, hr

(C1)

C1
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Factoring out C and rearranging:

Dividing by (n + pK)):
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Solving the integral:

~

1 + Ogun

Pl

7 d

I+ 6 un

(C3)

Adjust the equation to account for the plug flow inlet and outlet:

where

t; = time of step input plus ¢, hr

The following relationship is used to convert time to pore volumes eluted in

Equations C4 and CS:

C3
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L = disk length, cm

u = average pore water velocity, cm/hr
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