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PREFACE

This report is the result of a continued field study designed to
guantitatively describe the effect of the disposal of dredged material
upon groundwater quality in confined upland disposal areas. The
dredged material disposal areas of this investigation included the
following four sites: Grand Haven, Michigan; Sayreville, New Jersey;
Houston, Texas; and Mobile, Alabama.

This investigation was performed under an extension of Contract No.
DACW39-76-C-0171 entitled, "Physical and Chemical Characterization of
Dredged Material Sediments and Leachates in Confined Land Disposal
Areas."” The original contract between the U. S. Army Engineer Waterways
Experiment Station (WES), Vicksburg, Mississippi, and the University
of Southern. California (USC), Los Angeles, California, was funded by
the Dredged Material Research Program (DMRP), Work Unit 2005, which
was part of DMRP Task 2D, "Confined Disposal Area Effluent and Leachate
Control,” of the Environmental Impacts and Criteria Development Project
(EICDP). The continuation of the contract was funded jointly by the
Dredging Operations Technical Support Program and the following U. S.
Army Engineer Districts: New York, Galveston, Mobile, and Detroit.

The research was conducted under the supervision of Dr. Kenneth
Y. Chen, Professor and Director, Environmental Engineering Program,
University of Southern California. Laboratory and data analyses were
coordinated by Robert D. Morrison. Individuals contributing to the
laboratory analyses at USC were: R. Stearns, M. Lu, A. Anderson, G.
Sawtelle, R. Santa Maria, A. Hsu, C. K. Tau, T. Tsai, and M. Cassidy.

Ms. C. McMahon performed the editing and typing.

Field sampling at Grand Haven, Houston, and Mobile was conducted by



Mark Bulot of SCS Engineers of Long Beach, California, acting as subcon-
tractor for USC in this study. Sampling at the Sayreville site was super-
vised by Chris Zeppe of the New York District.

The contract was monitored by Mr. R. E. Hoeppel, Environmental Lab-
oratory (EL), WES, under the supervision of Dr. R. M. Engler, Manager of
EICDP. The study was under the general supervision of Dr. John Harrison,
Chief, EL.

Commanders and Directors of WES during the period of this study
and preparation of this report were COL J L. Cannon, CE, and COL N. P.

Conover, CE. Technical Director was Mr. F. R. Brown.
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CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (S)
UNITS OF MEASUREMENT

U. S. customary units of measurement used in this report can be
converted to metric (3) units as follows:

Multiply By To Obtain

Feet 0.3048 Metres

Miles (U. S. statute) 1.609344 Kilometres



EFFECTS OF UPLAND DISPOSAL OF DREDGED MATERIAL

ON _GROUNDWATER QUALITY

PART 1:  INTRODUCTION
1.  The purpose of this study was to understand the fate of con-
taminants within sediments placed in upland disposal sites. The scope
of work was defined and performed to achieve the following twofold
objectives:
a. To perform a detailed physical and chemical characterization
of dredged sediment and subsoil core samples at all sampling

sites. These data were to be used to define:

(1) Contaminant levels in the dredged sediments and
adjacent soils.

(2) Correlation between total contaminant levels and
contaminant mobility.

(3) Transport mechanisms responsible for contaminant
migration.

b. To monitor leachate and groundwater quality at different
dredged material land disposal sites. This information
was to be used to determine:

(1) Time-dependent changes in leachate quality at
different depths.

(2) Effects of soil attenuation of mobile constituents.
(3) Changes in soil moisture.
(4) Groundwater dilution of leachates.
2. Some of these original goals were modified so that areas of
particular interest could be studied in detail during the project

continuation.  OF special interest were the following:
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quality.

Verification of postulated transport mechanisms
developed in the initial phase of the study.*

Impact of water quality parameters omitted in the
initial phase of the study.*

Correlation of data trends between the initial
phase and the subsequent analysis.

Development of predictive methodology of groundwater
quality resulting from upland disposal of dredged
material.

Due to budgetary constraints, only leachate and groundwater

samples were collected and analyzed in this phase. The background
data collected for the first phase study was also included to ascertain

the temporal impact of upland dredged material disposal on groundwater

* Yu,

K.Y. et al. 1978. "Physical and Chemical Characterization of

Dredged Material Sediments and Leachates in Confined Land Disposal
Areas ," Technical Report D-78-43, U. S. Army Engineer Waterways
Experiment Station, CE, Vicksburg, Miss.



PART II: SAMPLING PROGRAM

4. The four upland dredged material disposal sites chosen for the

original study were again sampled in this study phase. The four sites

were as Tfollows:

a. Houston, Texas (Clinton site) (Figure 1).

b. Grand Haven, Michigan (Verplanks® Coal and Dock Co. site)
(Figure 2).

c. Sayreville, New Jersey (National Lead Industries, #4 site)

(Figure 3).

d. Mobile, Alabama (Pinto Island site) (Figure 4).

Detailed physiographical and hydrogeologica®l descriptions of each
facility are described in the original report.*

5. Six groundwater monitoring wells from the original study were
chosen. for sampling. Well selections for the present study were based
on the following rationale: availability and importance of the data
from the original study, proximity of wells to one another for modeling
purposes, ease of access throughout the sampling program, ability to
collect the requisite sample volume, and location within the hydrogeo-
logical system. These criteria and others were considered in selecting
wells illustrated in Figures 1-4. Of the designated wells, three were
situated directly beneath the disposal site while two were located off-
site along observed groundwater flow directions. One well was designated
as a background well. Well logs describing thelithology for each site

can be reviewed in Appendices B, D, F, and H of the original report.*

* Yu, K. Y. et al. 1978. "Physical and Chemical Characterization of
Dredged Material Sediments and Leachates in Confined Land Disposal
Areas," Technical Report D-78-43, U. S. Army Engineer Waterways
Experiment Station, CE, Vicksburg, Miss.
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6. In several instances, sampling wells from the first phase study
were unavailable. Because of vandalism, a new offsite well (MK) was
installed downgradient from the Grand Haven site. At the Michigan and
Houston sites, wells situated offsite (MPW and OFPW) which were pre-
viously utilized for pumping tests were used for sampling purposes.

The original wells at Pinto Idand were utilized for sampling.

7. Existing wells at Sayreville were used for the initial four
sampling visits. Prior to the fifth sampling, however, all offsite
wells were destroyed. Therefore, the fifth and final sampling visit
to Sayreville resulted in sampling only four onsite locations (NJA,
NJB, NJC, NID) . While well NJ was not sampled during the first four
visits of the study, the data were available from the previous study.

8. Sampling procedures and methodologies developed during the
course of the original project were followed in an effort to provide
correlatable results between two series of data. Frequency of sampling
varied among the four sites.The Pinto Island site was sampled only
twice due to budgetary constraints. The number of sampling periods

and dates are as follows:

Site Sampling Period
1 2 3 4 5
Grand Haven, Michigan 9/7/78 12/11/78 1/22/79 3/31/79
Sayreville, New Jersey 11/27/78 12/29/78 1/28/79 3/25/79% 17/16/79
Houston, Texas 9/5/78 12/3/78 1/20/79 3/25/79 6/10/79
Pinto Island, Alabama 5/26/79 7/5/79

14



PART I11: RESULTS AND DISCUSSION
9. Analysis of groundwater during the second sampling program
was designed to complement data from the initial effort. Analytical
emphasis of these water samples deviated from the original study so
that unnecessary repetition of data would be avoided.
10. Due to inadequate sample volume in some cases, the priority
for analysis was needed. Evaluation of the results or lack of data from

the original study determined analysis priorities in this phase. The
order of priority was determined as follows:

a. Chlorinated hydrocarbons.

b. Trace metals.

€. Nitrogen and phosphorus species.
Due to the low level of chlorinated hydrocarbons, especially polychlor-
inated biphenyls (PCB's) in water samples, extraction of large volumes
of water is required in order to detect PCB's presence; therefore, in
some cases, analysis of other parameters was eliminated.

11. For purposes of statistical comparison, a well grouping

scheme was devised which roughly paralleled that developed in the

initial study. The well grouping for each site was as follows:

Background Undersite Monitoring
Site (BG) (D) (Mw)
Grand Haven, Michigan MPW MA, MB, MG MD, MK
Sayreville, New Jersey NJJ NJA, NJB, NJC, NJF, NJP
NJD
Houston, Texas OFPW HB, HC, HD, HF, None
HOSPW, ONOW
Pinto Is]and, Alabama PI-1 PI-B, PI-C, PI-D PI-H, PI-A

12. The well designations (i.e., BG, US, and MW) correspond to

15



the Tfollowing categories:

a. BG (background) represents a well whose water samples were
deemed representative of indigenous groundwater quality.

b. US (undersite) refers to a well situated in the zone directly
underlying the disposal site.

C. MW (monitoring well) consists of wells located downgradient

hydrologically from the site and US wells.

13. This scheme was maintained throughout the project except at
the Houston site where continuity of site water with the groundwater
was highly suspect due to the presence of a thick, continuous clay
subsoil. Therefore, only one well (OFPW) was designated as a back-
ground well while no offsite monitoring wells were sampled.

14. A statistical approach ("P" values) based upon sample
variation (i.e., mean and range) was used for data evaluation.

15. The students t-test was used to analyze the significance of the
differences between the three previously described well groups. Proba-
bility values developed from the t-test data were calculated to reflect
the probability of having value differences larger than chance. Table
1 lists the results of this analysis. Low "P" values listed in Table 1
indicate that statistical similarity is high for the two well groups
considered.

16. In order to compare the results of the "P" values in Table 1
with the probability data obtained in the original study, a comparison
between the corresponding well groups was conducted. This comparison
between the two data sets, listed in Table 2, was developed utilizing
the more extensive data collected in the original study as a base for

comparison. (The resulting difference is listed as either plus or

16



minus by which the groundwater "P" values differed from the earlier
"p" amounts).

17. While comparisons presented in Table 2 provide a generalized
view of these differences, individual sampling stations comprising the
well groupings selected in the initial study were not identical to
those used in these analyses. Another major difference is that, in the
original effort, data were collected from samplers located in the zone
of aeration and within the Tfill material while this analysis included
only leachate and groundwater samples. These differences account for
some of the observed discrepancies in the "P" values.

Characteristics of Leachates

18. Presentation of the groundwater data includes statistical
comparison of the three well groups. Similarities and differences be-
tween the "P" values obtained for this study as compared to the results
from the first phase study are discussed. Individual sample analyses
are presented in Appendix A. Graphic presentation of the data is
illustrated in Figures 6-28 in which the range and mean concentration
values for the three well groups (BG, US, MW) are listed.

pH

19. For leachate migration, pH is a major factor in regulating
the rates and extent of the reactions occurring at the soil/water
interface. ©H measurements were made in the field at the time of
sample collection, as well as an analysis in the laboratory upon
receipt of the samples.

20. Samples from the Sayreville site exhibited unusually low

pH values with a range of 3.4 to 6.7 for the various well groups.

17
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Table 2

Percentage Difference Between Data Sets

Comparison*
Parameter Site BG vs MW BG vs US US vs MW
Potassium Grand Haven -0.35 -0.14 J.01
Sayreville 0.89 0.06 0.005
Pinto Island -0.03 -0.03 0.07
Sodium Grand Haven -0.27 0.19 0.15
Sayreville 0.08 0.009 0.0
Pinto Island 0.18 -0.41 -0.28
Calcium Grand Haven 0.03 0.0 0.0
Sayreville 0.11 0.0 0.0
Pinto Island 0.20 -0.21 -0.98
Magnesium Grand Haven 0.20 0.01 0.0
Sayreville -0.18 0.0 0.0
Pinto ldand 0.08 0.0 -0.14
Sulfate Grand Haven 0.09 0.66 -0.03
Sayreville 0.10 0.0 0.0
Pinto |dand -0.17 -0.32 -0.24
Alkalinity Grand Haven 0.21 -0.025 -0.87
Sayreville 0.03
Pinto ldand -0.15 -0.16 -0.36
TOC Grand Haven 0.37 0.11 0.0
Sayreville 0.21 0.0 -0.49
Pinto Island -0.63 -0.69 -0.64
Cadmium Grand Haven -0.02 -0.26 0.0
Sayreville 0.6 -0.65 0.02
Pinto Idand NA NA NA
Nickel Grand Haven -0.39 -0.02 -0.07
Sayreville -0.33 0.03 0.18
Pinto Idand NA NA NA
(Continued)
*BG = background well; MW = monitoring well; US = undersite well;
NA = not analyzed.
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Table 2 (Concluded)

Comparison*
Parameter Site BG vs MW BG vs US US vs MW
Manganese Grand Haven 0.07 0.11 0.34
Sayreville 0.07 -0.51 0.39
Pinto Island NA NA NA
Iron Grand Haven -0.06 0.60 -0.40
Sayreville 0.17 0.11 0.28
Pinto Island -0.17 0.37 -0.47
Copper Grand Haven -0.54 0.02 -0.14
Sayreville 0.03 -0.25 0.23
Pinto Island NA NA NA
Zinc Grand Haven -0.20 -0.35 -0.13
Sayreville 0.58 0.0 0.14
Pinto Island NA NA NA
Mercury Grand Haven -0.09 0.27 0.37
Sayreville 00.54 -0.37 0.35
Pinto Island NA NA NA
Lead Grand Haven -0.25 0.81 0.01
Sayreville -0.64 -0.53 -0.89
Pinto Island NA NA NA
Chloride Grand Haven 48 14 24
Sayreville -11 0.01 0.01
Pinto Idand 14 0.02 0.0
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Grand Haven and Pinto Idand groundwater samples ranged from 7.0 to 7.2;
Houston undersite samples had a mean pH value of 6.1.

Total Dissolved Solids (TDS)

21. Groundwater analyses at each of the sites revealed that the dis-
solved solids consistedprimarily of inorganic salts, with small amounts
of organic matter. Table 3 summarizes the concentration of total dis-
solved solids (TDS) for each site location. Among the sites, the under-
site (US) samples closely reflected the salinity of the dredged material.
The average undersite concentrations of TDS ranged from 22.4 g/l at the
Sayrevi 1le site; 15.4 g/l at the Houston site; 8.27 g/1 at the Grand
Haven site; to 0.825 g/l at the Pinto Island site.

22, With the exception of Pinto Island, TDS concentrations of US
samples were clearly higher than MW samples which in turn were higher
than BG well locations. This trend suggests an increase in TDS caused
by leaching from the disposal area. This will be explored further in
the evaluation of each invididual parameter. Individual ion concentra-
tions are contained in Table 1.

23. The major cations analyzed include sodium, potassium, calcium,
and magnesium. Anionic species tested were chloride, sulfate, and
bicarbonate.  Theoretically, because every solution exists in an elec-
trically neutral state, the sum of the cations should be balanced by
the sum of the anions in solution. Figure 5 shows the relationship
between ionic imbalance (3 cations-C anions) and the total ionic con-
centration for each of the samples. Concentrations of total cations
plus anions ranged from 5 meq/1 to several hundred meq/1. Deviations from
the center line indicate that error may be involved in the analysis of

major ions.
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Table 3

Concentration of Total Dissolved Solids

Site

Sayreville, N.J.

Pinto Island, Ala.

Grand Haven, Mich.

Houston, Tex.

Location

BG
UsS
MW

BG

N
MW

BG
us
MW

MW
us

DS, mg/]

4242
22400
8426

530

825
1010

745
8270
2120

1170
15400
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Figure 5.
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Major lons
Chloride

24. Chloride concentrations of the four case study sites ranged
from a low of 10 mg/1 to a high of almost 10,000 mg/1 as shown in Figure
6. Values obtained from the four sites correspond to the salinity of the
dredging sites from which the dredged material was obtained. The
Sayreville site exhibited the highest overall concentrations among all
three well groups (i.e., MW, BG, and US), which is expected, considering
the saline setting. Sayreville also displays a high degree of chloride
migration. Low "P" values reinforce this conclusion for the three well
groups.

25. Grand Haven exhibited a similar trend as was observed at
Sayreville. This relationship suggests that chloride leached from the
dredged material into the zone underlying the disposal area where it
was greately diluted by less saline indigenous waters. The slight
difference between the background and monitoring wells suggests that the
chloride observed in the monitoring wells was well mixed with back-
ground groundwaters prior to reaching the offsite monitoring wells.

26. Pinto Island represented a deviation in the pattern observed
at the three other sites. This phenomenon could be explained in part
by the higher Cl concentrations obtained at one offsite well which
averaged 455 mg/1 at a 20-ft depth.* The Grand Haven MPW well probably
intersects a deeper saline water body than the shallower monitoring
well (PI-H). Using PI-H as a representative of monitoring well values,

a mean concentration of 90 mg/1 is obtained, which supports the

* A table of factors for converting U.S. customary units of measurement
to metric (S) units is presented on page 6.
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Figure 6. Comparison of chloride values for groundwater samples
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previously described dilution effect of the undersite samples by native
groundwater.

27.  Samples from Houston sites exhibited an undersite mean of 5.56
mg/1 and an offsite average of 0.603 mg/1. Correlation of the two data
sets is difficult due to the discontinuity of groundwater conditions
created by the clay subsoil. The higher onsite salinity reflects the
saline environment in which the dredged slurry was obtained,

28. Chloride values for all sites reported in the first phase were
generally lower than in the second phase. This difference could be
attributed to the additional disposal of dredged sediments between the
two sampling phases.

29. Due to the fact that chloride from dredged material can be
readily leached into the undersite samples, increments of chloride
concentration in groundwater resulting from the disposal of dredged
material should be an important consideration in selecting a disposal
site.

Alkalinity

30. Mean alkalinity values for undersite samples ranged from a
high value of 137 mg/1 at Houston, to a low of 20.6 mg/1 for Pinto
Island wells. Undersite mean sample values ranged from 89 mg/]1 at
Grand Haven sites, 69.mg/1 at Sayreville sites, to about 18 mg/1 at the
Pinto Island sites. The concentration range is shown in Figure 7.

31. Sayreville samples exhibited a range of alkalinity values
from barely detectable to a high of 197 mg/1. Low alkalinity values
are usually associated with low pH values of the surrounding medium, with

water samples from well NJJ being a case in point: average pH values
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Figure 7. Comparison of alkalinity values for groundwater
samples
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were 3.4 with alkalinity values close to zero. At three out of

four well sites, undersite well samples were found to contain the
highest alkalinity values followed by groundwater and background values.
Alkalinity generated from the dredged material seems to be neutralized
by the acidic soil upon leaching. The remaining alkalinity might be
further diluted in the groundwater system.

TC, ToC, and TIC

32. Total carbon (TC) and total organic carbon (TOC) were deter-
mined. Total inorganic carbon (TIC) was obtained from the difference
of the two. Concentration ranges of these parameters are presented in
Figures 8, 9, and 10.

33. Mean total organic carbon (TOC) values in undersite waters
ranged from a high of 170 mg/1 at Houston sites to a low of 40 mg/1
at the Pinto Island sites. The TOC ranges encountered in this study
were similar to data in the previous study. Concentrations of TOC in
Grand Haven, Sayreville, and Houston samples exhibited a decrease in the
order of undersite, monitoring well, and background groundwater,
respectively. The trend observed in TOC was identical to that for
alkalinity except at the Pinto Island site, where background values were
found to be higher than either undersite or monitoring well groups.

This observation is similar to the results from the first phase study.

34. Both TOC and TIC appear to have increased in the monitoring
wells resulting from the disposal of dredged material. Changes in
concentration of total inorganic carbon, which is mostly alkalinity,
appear to be affected in part by both biological oxidation, as well as

dissolution/precipitation of calcite. Alkalinity axd TOC observed in
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Comparison of total carbon values for groundwater
samples

41



TOC, mg/1

900 =
800 —f
700 —f

600 —
500 el

400 ==

300 —

200 —

100
90
80

70
60
50

iyt

40
30

20

—
- v 9O N mwo

1111

1

LEGEND: Range T
Mean )

8G

us W BG uUs M BG  US MW B  US
Grand  Haven Sayreville Pinto Island Houston

Figure 9. Comparison of total organic carbon values for
groundwater samples

42



TIC, mg/1

W A NI0O0 O

LEGEND: Range T

Mean i
- T
— . T [ ]
= ®
Z 1 i
& [ Y
-
— 5 R
Igi
.6
.54
.44
.3
|
BE s M B US MA g US M BG us
Grand  Haven Sayreville Pinto  Island Houston
Figure 10. Comparison of total inorganic carbon values

for groundwater samples

43



the groundwater wells were similar to data from the original study
except at Sayreville, where onsjte values were higher for the second
sampling phase. The increase noted at Sayreville sites could be due
to the disposal of large volumes of dredged sediments between the two
sampling periods.

Nitrogen Species

35. Nitrogen species analyzed in the groundwater samples included
ammonia, organic nitrogen, nitrite, and nitrate. Due to the rapidly
changing nature of nitrogen species, precautions were taken to minimize
the transformations prior to analysis. The results are shown in Figures
11, 12, and 13.

36. Organic nitrogen values ranged from a high of about 300 mg/1
at Houston to below detection limits at other locations. Samples from
the Sayreville site exhibited higher overall concentrations than the
other sites with undersite, background, and monitoring well concentra-
tions of 18.7, 10.8, and 5.8 mg/1, respectively. Data in Figure 11
indicate that organic nitrogen from undersite samples was mostly con-
verted to other forms before reaching the monitoring wells.

37. As shown in Figure 12, there is no clear trend on the
transformation and migration of ammonia from the disposal sites, with
the exception of the Pinto Island site. The undersite samples usually
contained the highest ammonia concentration.

38. Mean nitrate values ranged from a high of 400 mg/1 for the
undersite samples at Sayreville, to about 1 mg/1 at Pinto Island. The
mean nitrate concentrations correlated closely with ammonia nitrogen data

for the wells at the Sayreville, Grand Haven, and Houston sites. This

44



668
-

300
200

—

W B OO0 O

~

Organic Nitrogen, mg/1

Ll

|

-

lel 1Lt

]

Ll

Ll

LEGEND: Range |

Mean e

ND

o
[
Grana Hayen

Figure 11.

Bb i
Sayreville

BG

Pinto

—_
MW
Island

Comparison of organic nitrogen for

groundwater samples

45

)
Houston



1000
900
‘800

: : range |
- LEGEND: Range

300
200

Mean e
ND = not detectable

o=@
RN

5

—d
]

@

|

EL
@

[FRNT Y- S-S
|

~
|

pa bl

Ammonia Nitrogen. mg '
N o e i oiebion

]

i

.03 i
|

i

.01 D D__1%D ND ND ND ) ND

BG us MW us MW BG us MW BG us
Grand  Haven Sayreville Pinto Island Houston

Figure 12. Comparison of ammonia nitrogen values
for groundwater samples

46



mg'1

Nitrate,

—

0.
.09-

:88-
.06

.05 =
.04-
.03-

-02-

LEGEND: Range |
l T Mean e

B US B 05 86 W

us
Grand  Haven Sayreville PInto  Island

Figure 13. Comparison of nitrate values for
groundwater samples

47

86 us

Houston



relationship indicates that some degree of nitrification is occurring in
the aerobic surface soils and interstitial waters in the unsaturated zone.
Nitrate concentrations show increases downgradient from each of the

Grand Haven, Sayreville, and Pinto Island sites. Concentration of
nitrate above 10 mg/1 (as N) is generally considered to be unsuitable

for domestic consumption.

39. Nitrite concentrations show mean values in all samples of
less than 0.1 mg/1. The average total Kjeldahl nitrogen (TKN) values
(organic plus ammonia nitrogen) range from a high of 713 mg/1 to a
low of 4.0 mg/1 for the four sites. With the exception of Pinto Island,
TKN comprised the bulk of the nitrogen species at each site. As indi-
cated previously, Sayreville was the only site with an increase in TKN
in monitoring wells.

Total Phosphorus and Phosphate

40. Concentrations of total phosphorus and orthophosphate are shown
in Figures 14 and 15. Mean total phosphorus ranged from an onsite high of
6.9 mg/1 at Houston sites to less than 0.1 mg/1 at the background well at
Sayreville. All four sites revealed a low "P" value in the undersite
versus background correlations with the exception of Houston, where mean
values of 3.11 and 2.13 mg/] were recorded for background water samples
and undersite water samples.

41.  Orthophosphate phosphorus levels recorded for the groundwater
samples were fairly low, ranging from below the detection limit to an av-
erage high of 3.0 mg/1. Statistical analyses revealed that Pinto Island
exhibited a dissolution potential for phosphate throughout both

sampling phases. Soluble phosphate concentrations appeared to correlate
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fairly well with pH values. Solutions with high pH values tended to
contain higher phosphate than solutions with low pH values. This
observation could be due to greater phosphate adsorption by clay min-
erals at low pH. Concentrations of orthophosphate appear to be
regulated in part by ferric phosphate and calcium phosphate solubility.
This relationship, which was postulated in the original study, correlates
well with the compiled groundwater data.
Sulfate

42. Sulfate concentrations range from a low of 10 mg/1 to a high
value of 6000 mg/1. This extreme variation represented the concentra-
tion range in the undersite samples from Houston sites. The variation
of sulfate concentrations among all four sites is quite similar to that
of chloride concentrations. The less saline environment of the Pinto
Island site contained the lowest concentration of sulfate as well as
chloride. In general, the undersite samples contained the highest
concentration of sulfate. The levels in the background groundwater and
monitoring wells did not follow any fixed pattern. Sulfate concentrations
in all sites are shown in Figure 16.

Sodium and Potassium

43. The highest overall sodium concentration was observed at
Sayreville, followed by Houston, Grand Haven, and Pinto Island, respec-
tively. This order is similar to that of chloride concentrations.
Undersite sodium values were significantly higher than either background
or monitoring well concentrations except for Grand Haven. Background
values obtained were the lowest among the three well groups analyzed.

Observed "P" values were found to be similar between the two data sets
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(see Table 1). The concentration range is shown in Figure 17.

44. Potassium trends were similar to those observed for sodium.
Undersite values were the highest with background values the lowest.
Values ranged from a mean of 170 mg/1 for undersite wells at the Houston
site to a mean low value of 5.0 mg/1 for offsite monitoring wells at the
Grand Haven site as shown in Figure 18.

45. Based on the initial analyses of dredged sediments and
groundwater samples obtained from both sampling efforts, a potential
increase for sodium and potassium appears to exist downgradient from
the sites.

Calcium and Magnesium

46. Calcium values at the four case study sites range from an
average high of 476 mg/1 for undersite wells at Grand Haven to a low
of 33.4 mg/1 for the background wells at Sayreville, New Jersey, as shown
in Figure 19.

47. Calcium values obtained from groundwater wells at the four
sites generally showed higher undersite values than both the background
and monitoring wells. Background values were the lowest in all cases.
This statistical difference between background and undersite wells indi-
cates that a concentration gradient exists for the migration of Ca from
the sites.

48. Trends observed in the previous study indicated similar
relationships between sampling points within the dredged material and
the underlying. soil. Comparison between these sampling points suggests
a potential for leaching from the dredged material to the underlying

soil and groundwater.
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49. The general statistical trend observed at the four sites in
both the original study and in the present study reveal a maximum cal-
cium concentration within the dredged material with a decreasing vertical
and horizontal gradient. Background values were lower than those at the
other well groupings.

50. Concentration trends for magnesium were similar to those
observed for calcium as shown in Figure 20. All four sites exhibited
higher undersite values than the corresponding monitoring well groups.
Background mean values were the lowest among the three groups. This
relationship indicates a high probability that an increase in magnesium
concentrations in groundwater could result from the upland disposal
of dredged material.

51 . Dredged material obtained from saline environments exhibited
higher magnesium levels than those taken from freshwater environments.
The mean undersite concentrations of magnesium varied from 490 mg/1 at
the Sayreville site, 290 mg/1 at the Houston site, 60 mg/l at the Grand
Haven site, to 30 mg/1 at the Pinto Island site. These values are
approximately equal to the levels of magnesium in the interstitial water
of the sediments obtained from the dredging sites.

52. Concentrations of calcium leaching from the disposal sites
are in part controlled by the formation of calcium carbonate and calcium
sulfate. At Sayreville, where samples exhibited low pH values (3.1-3.7),
alkalinity was generallyverylow and sulfate concentration was high. The
background well selected at Sayreville (NJ) exemplified this phenomenon

2 concentrations of 546 mg/1 and 33.4 mg/1,

with average 804= and cat
respectively, at a pH of 3.4. Calculations indicate the Ca and SO4 con-

centrations to be close to the solubility product limit for Ca304
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(K. =2.5x ]0'6) Other wells at Sayreville also followed this pattern,

sp
especially for the low pH groundwaters. Calculations performed for

3

calcium carbonate solubility indicate that calcite is the solubility
controlling solid for sites with high pH values.

Chlorinated Hydrocarbons

53. Chlorinated hydrocarbons were analyzed for all the collected ground-
water samples. Included in the tests were three widely used forms of PCB"s
(Aroclor, 1242, 1254, and 1260) and chlorinated preticides such as op" and pp"
isomers of ODT and its analogs DDE and DDD. Analyses of 96 water samples in-
dicated that levels of both PCB"s and chlorinated pesticides were at nonde-
tectable levels.* Detection limits for total PCB's and chlorinated pesti-
cides were 0.1 and 0.01 ug/1, respectively. Forty groundwater samples ana-
lyzed in the first phase study exhibited no detectable soluble species.

54. Adsorption of the chlorinated hydrocarbons onto clay and organic
matter is known to remove chlorinated hydrocarbons from solution. Clays ob-
served at Houston, Grand Haven, and Pinto |dand, and loams encountered at
Sayreville and Pinto ldand, together with the organic laden dredged material
and surface soils, would provide a conducive setting for this phenomenon.

Trace Metals

55. Trace metals analyzed in this study include the same elements
included in the original study. Most of these elements were found to
be in the micrograms per litre or submicrograms per litre range and
correlated fairly well with the earlier trace metal data.

56. In the original study, several assumptions concerning the

* Two water samples showed detectable PCB®s: an undersite well from Houston
(HD, 1.45 wg/1) and a monitoring well from Pinto Island (PI-H, 2.2 ug/1).
Since continued monitoring of these wells failed to show additional con-
tamination, an interference problem was suspected.
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controlling solids under various conditions were presented. Under aerobic
conditions, the stable solids that control the metal solubilities are
usually oxides, hydroxides, or carbonates. In a vreducing environment,
trace metals arebelieved to precipitate as metal sulfides. From these
two assumptions , a number of relationships were postulated that are
described in detail in the original work.

57. By assuming carbonate and sulfide to be the controlling
solids in the majority of cases, theoretical diagrams can be constructed
to illustrate the suspected metal concentrations with pH as a master

variable. Tables 4, 5, and 6 may be used for this purpose.

-1.5 -3.5

58. The total carbonate (CT) values of 10 to 10 moles
were selected for calculating soluble concentrations of metal species.
Calculated values were based on the levels of alkalinity determined
from water samples. Reference to these soluble metals species concen-
trations will be made throughout the trace metals discussions.
Cadmium

59. Cadmium values were found to range from a high of 50 ug/1 in
samples collected under the Sayreville site to nondetectable levels at
Grand Haven (Figure 21). Sayreville generally exhibited higher background,
undersite, and monitoring well values. Grand Haven cadmium analyses re-
vealed values in the submicrogram per litre range. Houston samples varied
from an average background concentration of 1.5 to 10.9 ug/1 for the under-
site well groups. Observed values were similar to those reported in the
first sampling program with the exception of samples from Sayreville

sites, which showed lower levels in the current study.

60. The high cadmium concentration found in the Sayreville samples
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Table 4

lonic Strength and Activity Coefficient

Activity Coefficient

lonic Neutral Monovalent Divalent Trivalent
Sample Strength Species lon lon lon
1
Houston MAV* 0.18 1 0.71 0.25 0.05
uw 0.028 0.85 0.52 0.23
Grand Haven US 0.083 1 0.78 0.35 0.09
MW 0.023 1 0.86 0.54 0.25
BG 0.008 0.91 0.69 0.43
Sayreville US 0.26 l 0.68 0.21 0.03
MW 0.093 l 0.76 0.34 0.09
BG 0.046 1 0.82 0.44 0.16

* MW = monitoring well; US = undersite well; BG = background well.

61



(panu13uo))

8°G¢ z8r €6 4x 0 8 (III)ad
xx 6781 g es (sed)6°91L Z°01 £°6l (11)34
(%(H0)®0on3)
AR
“(S0ang)
L7 2°Se £9'6 9781 " 02 (1 )m
AN“_.m?o&o_Sv 870¢T
(¢(Yod)Ho%eg) 9vv
(¢(Yod)Ho%®2) 9-0v
(a11uop | 1a0W 7, 2 4
-juow-e3) 85 (“(0“H)"“dOHR)) -9
(a11uogop)
‘ (831y300UR) itm 2 . L°91
mezs U omvvxouw o “ (23 iobue)
c (*("0d)"e3) 92 .mmu_m_mmmV
(*oLse)) L€ (VdoHes) sz-o 62 ze°8 9z°g (I e
1°9¢ 9°€T 9°€T (11)P3
33eI1S ayeydsoud apriojy) ap1yInsS a3euoqIe) apIX01pAH apIX0 EAE

£S910ads Jeaspy Jo ( mv: sjonpodd Ajrpignjos Juejdoduj

S 9lqel

62



(panurjuo))

(4eqeuutd)
9°'tS
(4eqeuuLOelBW)
8°€eT 272 52 xx L°G2 (I1)6H
(pa3e11dioaad)
L°Sl
‘(auLe3sAud)
wx T°ET 44 62T €6 LT xx 26°0 (I duw
€(0%)
Y0dHBW)
«x 0°
3(0%)
Pod"wnew)  (E(o%)
*x CTET €1o6mw) ¢(%09)e0bu)
11291y 4 1 ‘91
((¥0d) "HNBW) M* .Amuwmw;w:cmwcv (a119n40)
wx 97CT “(%0%) g 9" 1T
Amﬁ¢omvmmzv N_umzv * (311s8ubew) (aAL3oe)
8¢ it 67 2°6 (1 Juw
(%(%00)
¢(Ho)%qq)
(Y0dHud) 8°8T (09d)
wx 9721 °G°EY 6L Y 9792 '€l T°91 °GT (I dad
A'OINIS axeydsoyd E I [Te) SpIIINS a1eUOqIE) SpIXOIPAH apIX0 118

(penunuod) g 9pqel

63



(panu13uo))

(pa1ea1dioaud) (pabe *3sAud)
172 mN@H 5
pabe
(s31Znm) “ snoyduoure)
87¢¢ 9l
(a11u9]eYdS) (snoyduoure)
xx£0°1¢ L79¢ 2°qe L°qT (11 duz
(pabe)
LELL
L7G2 (Ysauy)
G 81 18747 (IT)IN
(e 1uog 1
Joujuouw-eN)
»¥b6¢
(e31qLe)
x¥9°0b (I)eN
(92 1A00SNW)
b2l
(aseooy3uo)
Y I°v- (1)
2]edl|Is ayeydsoyd apLIoyd apuLINsS ajeuogJe) 9P IX0ApAH apIX0 1elap

(penunyuo)) g ajpgeL

64



*_HoZ +

+¢

t¢

BH

= 0% 3 (S)OBH £(s)01S 3 _HOZ 3 U = 0

()25 3 Hoz + ,uz = 0% + (s)%0usuz

¢ €

H3(5)%0LSUN  £0% + 0% + UM = HZ + (S) 0w
f0%HE + _L0E + BN + ¥ = (aannrewren <s)E(0%)E oBpy
‘0%H9 3 _10Z + +Nmz = (a1130yosig “s)?(0%H)¢196M

0% + Y0dH + o0 = (5)€(0%) YodHbM

-2
‘0% + -tod + T + BW = (5)%(0%)("0d) hnou
t Yoa + Pun + B0 = () (Tod) Phnew

_PodH + 94 = (5)P0dHac

fHOZ + ,,4d = O%H + (5)0ad

()%(%02)%(H0)Fad
CREORITY
%hg 1 (s)¥gl

+

1
.Noum 1 _HOC + +Nnmm

¢ rerd _
£(S)°0LS + _HOZ + 230

_HO9 + Leodz = 0

€

t 5002 + BN+ e0 = (anworop <5)(E00)Bued

+2

2 3 Koty 3 "0is%Hez 3 L lvpl = 0%Ho9 + (earvorniouquou-en *s) Y(4o)0%EE Ly L9 Y yEE Ogye

€

.

BN 3 _HOZZ +

_HO9 + Yorsty ap + S EL 4oV 9T = 0% 21 + (esejo0y1I0 “s)8of1s1va %
£,2% 3 _H08 3 "0usHz 3 vz = 0%8 + (sanunaoue +s5)8lis?iye)
¢_Hoe 3 Torsthe 3 aen + wel¥ =M+ 0 e + (3n1q1e <s)8ofisiveN
3,52 = (danyeuaadwal) 1 ‘0 = (®anyeuaadwal or1uUOl) | udYM Aa N mopvam n 1 sanjep

orsPHLL 3 1wz = 0%HoE + (eatuopprsounuou-en ¢5)C(Ho)OT0L9 € gEE 2 EE Dpye

+£

tHooL + Yois"He 3 M 3 e = o%HoL + (3noosnu *s)2(40)0Lof1sE 1y

€

(pspnpouo)) g ajgel

65



(panu11uo))

g 0v o5

62°Se /€702 9T°0T “HO
T2 - 2570 2T 22T 19 (111)24

£z _Yos

€28 1076 019 HO
1870 8€°0 1 (11)34

£2 61 81 _Yos

10707 1179 09

95 b1 2T 8T"€T 0°9 “HO
62T 6E°T T 85°T 19 (TBLN

69°1 900 - 96'0 _Yos

6261 60" /T 12761 6L _SH

29 oo

0679 8174 278 ge°8 0.8 80°9 HO
522 00°T 1672 8172 692 692 19 (1 e
9 Boy Sy Boy 7y 6oy €y 6o ¢y foj Iy 6oy pueb 1T 1E19W

SJUEISUO) UOIJeud0] puebii-pelaNn

9 °9lIqel

€6



1’4’ 68°¢T

€470 1970
G870
68°6

91 1T°17

8,70 8.°1
96°0T
0.0

87/

T AShN)

G GT

0c°0

02791

c0°€ ¢s°1T 70°T
% 6oy Iy boy Py Boj

¥ 6oL % boy

LE°¢
vy
ev-o
29°¢
VL
€L°9
09°1T
8T°¢
0LV
¢L 0
11°¢
e8¢
80°T

HV_ Boy

puebi

(11)uz

(I Jad

(IT)N

Crun

1e1s

(pepnjouo)) 9 sjQelL

67



1000

~

ug
N
1

Cadmi~»

LU

MR

T

W N l.naNm’a
|

s 1 a1t

w & o omimoo

-04-

LEGEND: Range I
Mean °

NA = not available

ND not detectable

-— e i e s e e W e e— e

NA NA NA |
ND ND ND. ND

BG us MW BG US MW BG US MW BG  US
Grand  Haven Sayreville Pinto  Island Houston

Figure 21. Comparison of cadmium values for
groundwater samples

68



appears to be, greatly influenced by surrounding industrial activity. Back-
ground values obtained in the initial study and during the project exten-
sion revealed greater values than the undersite concentration. A proba-
bility value depicting a strong statistical relationship suggests the
correlation of indigenous cadmium values with industrial sources.

61. The potential for cadmium leaching from Grand Haven and Sayreville
appears to occur. As presented later in Part XV of this report, the major
controlling mechanisms appear to be regulated by either cadmium sulfide
or cadmium carbonate solids and by adsorption.

62. Total free sulfide (ST) in solution include H'ZS’ HS™, and s”.
The distribution of these species is pH dependent. The concentration of

the sulfide ion can be calculated as follows:

] ST
St 1ex + MR (1)

W1 7

bility values can be calculated. These vajiues are based upon the
assumptions that in an oxidizing condition cadmium carbonate is the
contrelling solid where:
2 = Ks - ) 10-1?.69 @)
[co5] [coy1
In-a reducing setting where cadmium sulfide is the stable solid, cadmium

concentrations are given by:
K -26.96
2= s . 107 (3)
[s] (s”]

Based upon the sulfide concentration, the soluble cadmium can range from
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submicrogram per litre to micrograms per litre.
64. Free cadmium concentrations calculated from these equations for

both sulfide and carbonate solids for the three sites are tabulated as

follows:

Site pH Range CdS Control, ug/1__ CdC03 Control, mg/1
Sayreville 3.1-7.3 2.1 = 4.2 X 10'4 2.2 X 10'4 - 7.2
Grand Haven 6.8-8 1.3 x 107 2 x w03 2.2 -24
Houston 6.6-7.8 1.3 x 1071%2.1x 103 1.4 11

65. Values for the oxidizing environment were similar to those
observed for high pH values. At the other end of the pH scale, the
observed values were lower than the theoretical concentrations.

Copper

66. Samples from Sayreville sites exhibited the highest copper
concentrations.  Average background values of 548 ug/1 were significantly
higher than the undersite level of 101 wug/1 and offsite monitoring
groundwater wells of 39 ug/1. The highest recorded copper concentrations
in the groundwater samples were found in the background well NJJ of
13 mg/1 which was similar to the relationship reported in the initial
report. Concentration ranges of copper are shown in Figure 22.

67. Low pH values in the Sayreville samples (range of 3.1 = 7.3)
may partially account for the observed copper levels. The background
well, NJJ, with an average pH of 3.4, exhibited the highest concen-
trations of soluble copper. Previously reported high Eh values at
Sayreville, which, in conjunction with the low pH, suggest an
effective acidic and oxidizing environment conducive to the support

of solubilization of copper. However, the simple solubility
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2

concentrations for Cu+ result in levels several orders of magnitude higher
than those observed. This observation suggests that several attenuation
mechanisms exist which may be responsible for the measured values.
Several proposed phenomena may include sorption of copper by iron and
manganese oxides, interactions with clay and organic particulates, and
copper chelation with humic substances. The situation of the Sayreville
site in a marsh area may support the general assumption that copper is
strongly complexed with organic matter. In some ways, all of the
mechanisms mentioned probably govern the transport and observed copper
levels in the disposal sites. Probability values calculated for copper
for the three well groups provided poor correlation between groups.
Reported values were within ! 25 percent of results obtained in the
first sampling program.

68. Grand Haven background and undersite average copper values
were similar (25 versus 30 ug/1) and student t-tests suggested a
significant probability in this relationship. It is difficult to specu-
late as to the leaching potential at the site due to this relationship.

69.  Copper levels at Houston were found to be higher in the under-
site samples (44.6 ug/1) than in the sole background well (7.2 ug/1).
The existence of a dense clay underlying the site could provide an ex-
cellent medium for the adsorption of the majority of the positively
charged copper species. This setting could partially account for the
lower offsite values.

70. Theoretical copper calculations can be obtained from simple

solubility concentrations. [N an oxidizing environment the copper

concentrations can be determined using the following equation:
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L

+2 Ks 2 ]0-]6-6

Cu = —=r —
- 2 _ -
OH CO3 OH CO3

% )

In a reducing environment copper sulfide is expected to pe the controlling
solid due to its low solubility product. |In this case, the copper

concentration is as follows:

w? - o 0%t ©)
S S
By using these solubility equations, the following values can be
calculated:
Oxidizing Reducing
Site pH Range  CuCO3 Control (ug/1) CuS Control (ug/1)
Sayreville 3.1-7.3 1.3 - 2.0 x 105 4.0x108. 16 x10° "
Houston 6.6-7.8  0.178 = 1.99 4.01x 10714 2.53x 10715
Grand Haven 6.8-8.0 0.505 - 2.5 2.53x10° 1% 2.01x10°1°

71. Observed values of soluble copper are generally in agreement
with the predicted values from calculations based on Cu2003(0H)2 as the
controlling solid. Deviation from calculations may result from adsorp-
tion, precipitation, or complexation. Complexation with other ligands,
for example, may result in higher copper concentrations through solubi-
lization. Copper complexation with organic matter, chloride, hydroxide,
and sulfate is quite common.

72. Existing high levels of copper in the background groundwater
at Sayreville complicate the establishment of leaching effects of copper

from the site. Both undersite and background values were higher than
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monitoring well values, which were situated in a marsh area relatively
free from intrusion of background sources and from tidal influences.
Lower values in the three monitoring wells could be due to the complex-
ing with organics to form insoluble complexes in the marsh areas or
through precipitation or adsorption mechanisms. The hydrogeological
setting at Houston precludes any valid correlation between the under-
site and background samples.

Iron

73. Soluble iron concentrations measured in the groundwater
samples varied greatly. A difference of up to four orders of magnitude
was observed as shown in Figure 23. The wide variations are probably a
combined effect of pH, redox, and complexation.

74. Low pH and Eh waters are known to favor the mobilization of
iron. However, in nature, low pH is generally the result of oxidation.
At the Sayreville site, where the lowest pH values were encountered
(3.4-6.7), iron values were generally lower than Grand Haven or Houston
sites with more alkaline environments. Obviously, within the pH and
Eh values encountered in this study, the effect of redox conditions
is much more profound than variation in pH values. A potential for
mobilization appears to exist at Grand Haven, Houston, and, possibly,
Sayreville. Grand Haven and Houston both exhibit higher undersite
values with decreasing levels in surrounding groundwater samples.
While the Sayreville site exhibited a potential for mobilization from

the dredged material to groundwater, the high background values (1.4 mg/1)

tend to negate such speculation.

74



Iron

. mg/1

BOO .,
700 —

600 -
500 =
400 sm——

KL\

200 e

t 110

w J;L!\ON\IQ"DB
[HETI|

(=3 N
o
!

[

a
1

~n
2

.01 |

LEGEND:

Range I

Mean °

NA
ND

not available
not detectable

NA NA NA

BG us MW
Grand Haven

Figure 23.

BG | MW
Sayr. lle

T
BG us “lim BG US
Pinto Island Houston

Comparison of iron values for

groundwater

75

samples



Lead

75. Lead was present at low concentrations in leachates and ground-
waters at the three monitoring sites. Houston samples exhibited the
highest concentrations with an average of 45.9 ug/1 for onsite wells
and 9.6 ug/1 for the background wells. Of the three sites, onsite
values were found to be highest with background wells containing the
lowest soluble lead concentrations. This 1is shown in Figure 24.

76. Lead sulfate is believed to be the controlling solid in low
pH and high sulfate groundwater samples. Calculations performed in the

original study, assuming a sulfate value of ]0'2'5

-3.3 M

M and a total carbon
value of 10 , reveal that lead sulfate is the controlling solid at
pH values of less than 6. Lead carbonate becomes the controlling
solid in the 6 to 11.5 pH range. By using these data, the following

theoretical values can be developed:

Theoretical Calculation
Actual Range Pb%Q3 as Control Solid

Site pH Range Lead, ug/1 Ksp = 10-13-30 yg/1
Sayreville 3.1-7.3 0.2-60 1.08x10°% « 3.28x10°
Houston 6.6-7.8 2-100 2.07x102 - 10.4x104
Grand Haven 6.8-8.0 0.4-40 1.04 x 103 - 2.07 x 104

77. As revealed from the theoretical versus observed groundwater
values, the analytical concentrations are close to the theoretical
range. The lower actual values are most probably due to adsorption by
clay minerals which were found in the majority of the site soils.

78. Of the three sites for which lead was analyzed, the Grand
Haven site appeared to represent the greatest leaching potential with

background, undersite, and monitoring well levels of 0.7, 11.2, and
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2.5 ug/1, respectively.

79. The other two monitored sites indicated little or no leaching
potential.
Manganese

80. The majority of groundwater samples tested for soluble manganese
were found to be greater than the recommended Environmental Protection
Agency drinking water standard of 0.05 mg/1. Sayreville generally exhib-
ited the highest values (Figure 25).

8l. Manganese data suggest a leaching potential at Grand Haven and
possibly Sayreville. A low value of "P" for undersite versus surrounding
groundwater supports this conclusion. A similar situation exists at the
Sayreville site where the average undersite value for manganese was
7.1 mg/1 and the average value for monitoring wells was 0.64 mg/l1. The
high manganese value for the background well, NJJ, of 11.6 mg/1 may
indicate a favorable pH and redox combination for the solubilization of
manganous species.

82. Houston®s undersite high manganese value of 6.5 mg/1 is
difficult to correlate with the background well due to the hydrogeo-
logical system. Comparison of these two values and the potential
impact is therefore difficult. However, substantial leaching of
manganese is possible.

83. Manganese appears to represent a potential threat to indig-
enous groundwater sources. The contribution of manganese to monitoring
wells seems to be negligible at the Sayreville site; Houston could pose
a potential hazard, although the clay aquifer under the site may preclude

significant manganese movement. Leachate samples from the undersite wells
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at Grand Haven appear to represent the greatest potential for contaiminating
groundwater since the undersite concentrations were greater than the ground-

water levels.

Mercury

84. Mercury values, as determined by the cold vapor methed, pro-
duced a range of values from below detection (<0.01ug/1) to a high of
33 ;g/1 for one sample. Most samples were near 1 ug/1 as shown in
Figure 26.

85. Sayreville generally exhibited the highest mercury concen-
trations with an undersite average value of 1.8 ug/1, a monitoring well
value of 1.3 ug/1, and a background groundwater value of 1.4 ng/1.
Statistically, these values have high "P" values and are therefore not
highly correlatable. Because mercury can be removed through complexa-
tions with soil organic matter and adsorbed into inorganic sediment,
potential for mercury mobilization appears to be minimal. The
difference among well groups also suggests such a trend.

86. Mercury concentrations are controlled by mercury sulfide
-5.39)

(Hgs, Ky, = 10

mercury values (Hgf) are established for either of these controlling

in a reduced environment and mercury hydroxide

'25'4) in an oxidizing environment. The free

solids by the following equation:

' ]0-53.9 ]0-25.4
9¢ = ———— or
f [s] [o1™2] (©)

Considering each of these two controlling solids, soluble mercury con-

centrations can be calculated for the ranges of observed pH values.
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pH HngH)z Control, ug/l HgS Control, wug/1

3.1 1.05 x 10* 4.0 x 1072
6.6 5.04 x 1073 4.0 x 10731
6.8 200 x 107 2.53 x 10731
7.3 2.00 x 1074 1.59 x 1073%
7.8 2.01 x 107° 2.53 x 10732
8.0 7.98 x 107° 2.01 x 10732

87. Observed mercury levels were found to be much higher than
those theoretical calculations. This phenomenon can be explained by
the contribution of mercury ligands (i.e., hydroxide, chloride, sulfide,
and organic ligands) to the total concentration. This input could be
expected to increase the mercury concentrations by several orders of
magnitude above the theoretical solubility values.

88. Examination of groundwater data from this study in conjunc-
tion with earlier information indicates that a leaching potential does
not exist for mercury species.

Nickel

89. Nickel concentrations in the study site are shown in Figure 27.
Concentrations in groundwater wells ranged from 900 ug/1 at Sayreville
to nondetectable at Houston. A possible leaching potential between
Sayreville®s undersite and groundwater wells exists.

90. Grand Haven nickel concentrations exhibited a potential for
leaching. Undersite mean values were 87 ug/1 followed byoffsite concentra-
tions at the monitoring and background well groups of 15.8 and 11 ug/1,
respectively, The "P" values between the well groups at Grand Haven

reinforce this supposition. Average nickel concentrations of 128 ug/1
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from the first sampling at Grand Haven within the fill correlate well
with the decreases observed in the present study. This concentration
corresponds toan 18 percent nickel decrease between onsite data and the
undersite wells. An attenuation of 67 percent occurred between under-
site and the monitoring well groups.

91 . Average nickel concentration for undersite well groups at
Houston was 2 ng/1 with a background value of 20 ug/1. This situa-
tion, considering the isolated hydrogeological condition of the Houston
site, precludes a plausible explanation.

92.  Soluble nickel represented a leaching potential at the Grand
Haven site. This conclusion, based solely on the groundwater samples,
corresponds well with data generated in the Tfirst sampling program.
Sayreville exhibited a high probabilitythatleaching of nickel occurred
based on onsite information from the original study and groundwater
data from the undersite and monitoring well groups in the present study.
Zinc

93. As shown in Figure 28, concentrations of zinc in all sites
studied were generally below 1 mg/1 with the exception of the Sayreville
site. Sayreville groundwater sampleswere found to contain the highest
soluble zinc concentrations. The mean value at the background well was
2.2 mg/1 with undersite averaging values of 0.78 mg/1 and downstream
wells exhibiting a mean of 0.16 mg/1. These high values are under-
standable in view of the proximity of National Lead Industry®s titanium
oxide plant situated approximately 1 mile from the site. GCrand Haven
contained similar average values for the three well groups, while

Houston displayed greater undersite values than background values.
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94. Houston exhibited background zinc levels (0.04 mg/1) below the
onsite concentrations (0.15 ug/1). Isolationof the fill material from
indigenous groundwater by the impervious clay soils makes correlations
between onsite and background values highly speculative.

95. Grand Haven exhibited average background values nearly iden-
tical to the onsite concentrations. Average downstream monitoring well
values were found to be slightly lower.

9. Of the three sites, Sayreville reflected higher background zinc
levels than either the onsite or downstream groundwater values. Soluble
phase zinc concentrations at Grand Haven were nearly identical for all
three well categories and Houston®s hydrogeological peculiarities pre-
clude definite relationships between the higher onsite values and

the lower background values.
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PART IV: PREDICTION OF WATER QUALITY
Introduction

97. Statistical analyses of the data generated from this study as
well as the previously generated data indicate that there is a potential
for groundwater contamination. While the degree to which these poten-
tial pollutants affect groundwater quality is a factor of many variables,
theoretical models may be useful in defining the extent of the problem.
Several available models, including adsorption, equilibrium, and dilution,
were reviewed for possible use. Two of these, the dilution and solubil-
ity equilibrium models, are presented as possible explanations for the
observed results.

98. The dilution model was selected for use indetermining whether
dilution is a controlling mechanism for observed concentrations. lons
conducive to this model include sodium and potassium, which do not
readily form solid compounds or complexes under ordinary conditions.

99. The selected solubility calculation was chosen for its appli-
cability for metals involved in dissolution-precipitation reactions.
Applicable ions include calcium, magnesium, cadmium, copper, iron,
lead, manganese, and nickel. Descriptions of the dilution and solubility
equilibrium models are presented in the following pages.

Water Quality Models

Dilution Model

100. The dilution approach is designed to provide an indication of
those metals whichare largely controlled by dilution. By selecting

a conservative element such as chloride, an example of an ideal dilution
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situation can be presented. In this example, two waters with different
chloride concentrations (C]1 and C12) are mixed with the resulting water
containing a chloride concentration between C11 and C12. The chloride

concentration of the mixed water would depend upon the concentration of

C11 and CI2 as well as the degree of mixing as expressed by:

V1 X C]l X V2 x CI2
Cl; (mixed) = (7)
i+ Y

where V = volume of water
Cl = chloride concentration
Utilizing this approach with a conservative parameter along with another

water quality criterion (Y), additional information may be developed.

Two water samples A and B are provided as an example:

Water Body Chloride Concentration Y Concentration
A 200 Y1
B 50 Y2

By mixing varying amounts of A and B, new water bodies containing dif-
ferent Y and Cl combinations may be created. If both chloride and Y

are assumed to be conservative properties, a Y-C1 plot should result in

a straight line. Also, simple calculations can be performed. As an
example, assume:
Y1 80 mg/1, C1
Yo 20 mg/1, Cl

1 = 400 mg/1, V) = 3%

1
3

With this information, the following calculations may be made:

Y = F——80-mg/T—x
3+1

—x—26 ulQ/]‘ (8)

= 65 mg/1
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cl = 3 x 400 mg/1 x 1 x 100 mg/l
o+ 1

= 325 mg/1 (9)

IT Y is a nonconservative property, other controlling mechanisms would be
assumed to exert a partial or major influence. If other controlling
mechanisms reduce the concentration of Y from solution, the points
corresponding to the diluted water would be expected to lie below the
line. Utilizing the example in which A (leachate) and B (background)
are used, the following combinations would be expected:

a The Y-CI plot is a straight line indicating that Y is

a conservative property. Depending upon the proximity

of the data to either A or B, the degree of mixing
and volume of water involved could be postulated.

=2

All data points are above the V1-V2 line indicating
that a minimum of one additional controlling
mechanism releasing Y into solution exists.

o

All data points are below the Vi-Vo line indicating
that at least one additional controlling mechanism
exists for removal of Y from the solution.

(f=H

Data points provide no discernable pattern. In
this case, a number of controlling mechanisms
and interference sources may exist.

101. An attempt to explain the observed values of some parameters
according to this model necessitates that carefully chosen wells be
considered. The wells should be free of apparent sources of interference
(i.e., tidal, groundwater flow reversal, and anomalies) and be situated
in a groundwater flow path so that interception of the same water be-
tween wells may be compared. For this purpose, three wells were chosen
at a given site which met these criteria, namely, background, under-

site, and downstream wells. The following wells were chosen at three

of the four field sites:
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Offsite

Site Background Undersite Monitoring Well
Sayreville NJJ NJA NJF
Grand Haven MPW MB MD
Pinto Island PI-1 PI-D PI-H

The Ilocations of these wells are illustrated in Figures I-4. Pinto
Idand, which was sampled only twice, does not provide sufficient data
points for a rigorous examination. Houston was not examined due to the
hydrogeological situation which precluded such an examination.

102. The dilution approach was utlized for all heavy metals (Y)
analyzed in the groundwater samples. Of the elements plotted against
Cl, sodium appeared to result in the straightest line (see Figures
29-31). Discrepancies in the Na-Cl plots for Grand Haven could be a
result of numerous exchange mechanisms (Figure3l ). These factors were
also apparent by the close correlation of the monitoring well values to
background levels.

103. Plots for K-C1 provide relatively straight lines for Pinto
Isand and Sayreville. Plots of the K-Cl data for Grand Haven do not
appear to result in a discernable pattern, suggesting that a number of
other mechanisms exist (Figures 32-34).

104. The Mg-Cl1 and Ca-Cl plots are illustrated in Figures 35-39.
The Mg-Cl1 plots for the three sites corresponded roughly to a straight
line. This observation suggests that magnesium is diluted into the
groundwater at a fairly constant rate. The deviations from a straight
line suggest that other mechanisms (e.g., ion exchange) exist. The

Ca-Cl plots showed a similar trend with the majority of plot deviations
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situated above the line. Release of calcium through a number of
possible reactions within the groundwater systems could account for the
plots.

105. Trace metals were plotted in a similar fashion. No discern-
able pattern was observed with a wide scattering of data points. This
result is expected considering thehighlycomplex mechanisms affecting
the trace metal concentrations. These metals are addressed in the
solubility equilibrium model.

106. In summary, dilution appears to be a dominant factor for
regulating the concentrations of sodium and chloride in groundwater.
Dilution also appears to represent a controlling factor in regulating
calcium and magnesium concentrations and to a lesser degree potassium.
Plots of trace metalsresultedin no observable trends.

Solubility Equilibrium Model

107. Controlling mechanisms which account for trace metal levels
in groundwaters include a number of complex interacting reactions.
Mechanisms such as precipitation/dissolution, complexation, and adsorp-
tion may react in concert or singularly to determine the concentration of
a trace metal in a given situation. A method by which the dissolution/
precipitation phenomena may be used to predict these values is the
solubility equilibrium approach. Application of this model for the
observed groundwater trace metal concentrations is presented in the
following section..

108. Solubilities of metal ions can change as redox conditions
fluctuate. Solubility of a metal ion is usually governed by a control-

ling solid, via a solid species of high stability. In an aerobic
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environment, stable solids that control the solubilities of the metal
ions include oxides, hydroxides, carbonates, and silicates. Under
moderate to extreme reducing conditions, most metals readily precipitate
as sulfides.

109. In addition to the solubilities of the controlling solids in
regulating concentrations of migrating trace metals, complexation can
account for some unusually high levels of metals in solution. Major
ligands responsible for forming soluble complexes include chloride, or-
ganic species, hydroxide, carbonate, and sulfate. The complexation
effect of trace metals is an important feature of the solubility
equilibrium model.

110. The adsorption mechanisms, though not considered in the sol-
ubility equilibrium model, could be responsible for reducing certain
trace metal concentrations below the theoretical solubility equilibrium
value. A model characterizing the effects of adsorption upon trace
metal transport necessitates consideration of the highly heterogeneous
chemical and physical nature of the soil/groundwater system.

111.  The solubility equilibrium model is based upon the solubility
of controlling solids and the complex-forming ligands. Model calculations
result in free metal ion concentrations at each sampling location, as
well as values for potential complexed metal ions in solution. Calculated
values from equilibrium model would appear high with respect to the
measured values if adsorption is a major immobilizing factor. Values
appear low if any soluble complexes are excluded in the model calculation.

112. Controlling solids. For the purposes of equilibrium
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calculations, some controlling solids are assumed for each redox condi-
tion. Based upon previous discussion presented in Part lll, the following
solids are assumed to be the solubility-controlling solids under aerobic

and reduced conditions within the pH range of natural waters:

Reducing Oxidizing
CdS CdCO3
CuS CU2(03(0H)2)

FeS = Fe(OH)3 = FeQ00H *= Fe,0,
MnS or MnCO, = Mn(OH)X = MnOOH = MnO,

NiS Ni CO3
PbS PbCO4
InS ZnCo,

113. Due to the heterogeneous nature of the soil and groundwater
interface, the redox and pH conditions , and thus the controlling solid,
may vary at each site. Under normal undisturbed field conditions,
saturated soils are mainly in a reduced state, Metal sulfides are
likely to be the controlling solids. On the other hand, exposed unsat-
urated soils may be in an oxidized state. Therefore, calculations
using both the reducing and oxidizing controlling solids are considered
to encompass the entire range of those potentially encountered redox

conditions.

114.  Ligand species. Due to the complexity of natural water

systems, it is difficult to include all ligand species which may be a
factor in the trace metal 1ion solubilization. Model calculations will

therefore include only those ligands whose concentrations were measured
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for each sample. This will serve as a lower limit to the complexation
effect. Any additional ligands would serve to increase the total metal
concentration. The degree of increase is a function of the ligand con-
centration and the magnitude of the ligand formation constants. The
guantity of unidentified ligand species also dictates the use of only
measurable trace ligands.

115. Ligands selected for model calculations were chloride,
hydroxide, bicarbonate-carbonate, sulfate, and sulfide. AIll anions were
individually measured for each sample with the exception of sulfide. The
original report demonstrated that, though hydrogen sulfide could be
smelled in a few of the samples from identical locations, the sulfide
was below the detection limit for the methods used (electrode and methylene
blue photometric method). Thus, for the model calculation, total sulfide

concentration, S was assumed at 10'9 M, or the acknowledged threshold of

T’
smell for hydrogen sulfide. In most samples, this value will represent

the upper limit of the soluble sulfideanion concentration.

116. Activity coefficients (11._1. The activity coefficients for the
metal ions and their complexed species were calculated from the Guntelberg

approximation derived from the Oebye-Huckel equation:
109Y1- = -0.5 212 UU (10)

i

where yp = 1ionic strength = % 7 Z1'2C1'
1
Ci = molarity of the 1'th type of ion

N
1

the valence of charge
117. For simplicity, the average major 1ion concentrations for

each site were used in calculating u and Y'i' The results are given
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in Table 4.

118. Modd equations. Free metal ion concentration is governed

by the solubility of the solid Mqu as given by:

e - [(KS M X | %
f.
lYﬁ vy (%) _

where [Mf] = concentration of free metal ions
KSp = solubility product
Y = ion activity coefficient
P,qQ = positive integers

Xf = concentration of free anions

119. Due to the effects of complexation, the concentration of

complexed metal ions in solution is given by:

m _n
[MmL(i)n] = [Ms(i)nm [Mf]m [L(i)f] " —YM———Y—L—Q)— (12)
YMml'(i)rr

120. The total metal concentration in the leaching solution is thus:

. k
(] = [ +m [ON

M.
—

m n
] ) j . ‘ ™ YL(4)
= [Mf] bz L By [Mf]m['-“l)f]n WoL(T) 1)

where [Mt] = total metal concentration

k = numberof ligands coordinated with Mn
i = ligand species
A] = total number of ligands
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L(4) ¢ = free concentration of ith ligand
n,m =  composition of the complex MmL('i)n
B(1) o = overall formation constant of complex MmL(i )n

121.  Solubility products and formation constants are temperature-
dependent parameters. For example, samples collected at Grand Haven
and Sayreville during the winter would likely be of different tempera-
ture than samples collected during the summer for. the same sites. For
simplicity, all calculations were performed assuming a constant tempera-
ture of 12°C. Generally, this assumption would not affect either of the

values by more than 5 percent as illustrated by the following:

Vetal log Kk , 12% log K . 25%C
cds 27.0 26.1
cus 35.4 35.2
PbS 27.7 26.6
InS 22.6 22.8

122. Model calculation. An example of the model calculations nec-

essary to determine the free metal and complexed ion concentrations is
presented in the following discussion using well HB as an example.
Important solubility products of the trace metals used in this example
calculation are included in Table 5. Relevant metal-ligand formation
constants are contained in Table 6. Values are molar concentrations
(excluding activities) for the example (HB). Graph presentation of all
samples is presented in Appendix B. Results of such calculations are
presented in Appendix C. An example of the calculations is presented

as follows:
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lon Activities

Chloride Alkalinity Sulfate Mono- Di-
Sample pH  pOH mmole mmole mmole valent valent
HB 7.4 6.6 210 0.45 0.80 0.71 0.25

123. The free concentration of zinc (an) is given by:

Ks InS

In, = I
yIn vS [$7]

f‘

where §

2 -1
Sy { K ]+ [H1] - 1}
2, -1
_ +
= s {Kz [H*] }
10-22.60 1,-7.4 2

or In, = mole
f (0.25) (0.25) 10730

7

6.37 x 107" mole

41.66 ug/1

124. The concentration of complexed zinc (ZnT) is given by:

_ 0.43 [¢1° 0.61 [c17]?
M eomotexed = D¢ X 10 %:1—] + 10 LYFTJ'_Z
+ 10053 [0, 020 [T + L aa o]
yer~ 3 ¥C1~ YOH™
=12 = =
+1o12.89 on_]? . ol44 o3 1o15.5 w1
YOH ’YOH_3 ’YO-H4
S0,
+ 102 37 [ 4=:I 1
ySO4
= 3.0 (an)
= 124.3 pg/t
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in

T it + Zn complexed

165.9 yg/1

125. Results. The results of the solubility equilibrium model cal-
culations and the corresponding measured values are presented in Appendix
C. Graphic display of these data is illustrated in Appendix B. Mercury
was not included in the calculations because most of the analyzed values
were comparatively small (< 1 wg/1), and various studies have indicated
sorption is the most important factor in controlling mercury concen-
trations.

126.  Wherever values from field studies fall on the straight
line (calculated value), or do not deviate too much from the line, the
equilibrium mechanism is considered to be the major controlling factor
in regulating metal concentration in solution. The line is a good
indication that the controlling solid chosen for the redox condition
at a particular site is likely to represent actual field conditions.

It also indicates that any alternate ligand species do not exist at
high concentrations, i.e., the effects of complexation have been
adequately represented by the model.

127. The specific field sites represented Dby points on the graph
are frequently grouped together with respect to each of the three
modeled sites. Points lying below the line would indicate an under-
saturated condition possibly caused by adsorption, a nonequilibrium
stage, or the nonexistence of the assumed controlling solid. In gen-

eral, for all of the carbonate-controlling graphs, the calculated or
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theoretical trace metal values are much greater than the analyzed
values. These values would therefore represent the upper concentration
limit for the appropriate redox condition. Values actually encountered
in these upper ranges could impact groundwater quality.

128. Amajority of the data points for the sulfide-controlling
graphs lie on either side of the straight line, indicating that this
is more representative of the actual field conditions. The variability
of the calculated values in reference to the analyzed values indicates
additional complexes as well as adsorption as possible influencing
factors or localized environment. Calculated trace metal values which
are lower than analyzed values where sulfides are the assumed control-
ling solids may be attributable to the arbitrary selection of the
sulfide concentration (see Part Ill). In many locations, the sulfide
concentrations are likely to be much lower than the value employed in
the free metal calculation, thus elevating the theoretical free metal
values.

129. Under reduced conditions, the controlling solids for various
metals were assumed to be CdS, CuS, FeS or FeC03, MnC03, NiS, PbS, and
InS. As previously mentioned, with sulfides assumed as controlling
solids, trace metal model calculations are usually within two orders
of magnitude of the measured values. This would indicate that, in
the Tfield environment sulfides could be the controlling solids for
cadmium, nickel, lead, and zinc. The exception is (CuS, Predicted values
of CuS were always many orders of magnitude lower than the analyzed
results. As discussed in Part Ill, copper forms strong complexes with

organic ligands. Should the concentration of organic ligands in the
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samples be known, the theoretical values could be closer to the analyzed
results.

130. For Fe and Mn, initial solubility calculations from FeS
(Ksp = ]0'16'9) and MnS (KSp = 10-15'7) indicated that soluble iron
and manganese should be on the order of 107 and ]08 higher than the
measured values. When considering FeC03 and MnC03 as the controlling
solids in the reducing environment, the data show that the theoretical
and measured results are much closer than the sulfide-predicted values
(see Appendix C).

131. Due to these conditions, it may be reasonable to assume that
field environments were reduced enough so that iron and manganese existed
in the +I] oxidation state (as opposed to the +III and +IV states) and
that there was insufficient sulfide to precipitate these metals as metal
sulfides. Conditions favoring the formation of Feand Mncarbonates
necessitate high pH and alkalinity and moderate to low redox. All
of these conditions can be the case of most groundwater samples.

132. Controlling solids selected for the various metals under
aerobic or oxidizing conditionswere CdC03, Cu2C03(0H)2, Fe(OH)3, Mn02,
3 With the exception of iron and manganese,
analysis of all remaining metals indicates lower measured values than

N1'C03, PbC03, and ZnC0O

corresponding predicted values. This information serves to substantiate
previous evidence that a reducing environment should exist beneath the
dredged material disposal sites. Additionally, the model calculations
for these metals would serve as the upper concentration limit for the
measured samples, with adsorption as the single most important mechanism

which reduced the actual concentration.
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133. It is well known that iron and manganese are less soluble in
an oxidized environment than in a reduced environment. jron usually will
exist in the forms of FeQOH, Fe(OH)3, and Fe203 in an oxidized environ-
ment. Manganese may exist as MnOQOH or MnOx where x ranges from 1.1 to
2. The solubi!ity of these solids would serve as the lower concentration
limits for the samples analyzed.

134. The mineralogy of manganese in an oxidized environment is not
easily characterized. It has been suggested that the following reaction
may be the controlling mechanism for MnO, solubil jty:

+ ++

MnO, + 24" = Mn -0.92

t ’/202 +H20 K=10

135. Simple solubility calculations indicated that the predicted

manganese values would be orders of magnitude lower than the measured

values (assumed dissolved oxygen = 8 mg/1):

-0.92 [+
+ 10 [4*] 2
[n""] = > [H]
M. [0,]
-0.92 2
= 10— (0.37) . [T (16)

0.78(0.25 x 1073
= 10-0‘]3 [H+]2 moles

- ]07.86 [H+] 2 4g/1

3

7x1077 to 7 x 10-9 19/1 for pH = 5 to 8

136. Subsequently, no model calculations were performed for
manganese in an oxidized environment.
Conclusions

137. Theoretical models can help define the potential concentration
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levels of pollutants in groundwater. The dilution and solubility
equilibrium models provide information on the controlling mechanisms
for pollutant transport and possible contamination levels based on
these mechanisms.

138. The dilution model shows that dilution is a dominant factor
in regulating sodium and chloride concentrations. Potassium plots also
correlate well for the Sayreville and Pinto Island sites. Though
trends for calcium and manganese concentrations show that dilution could
be a controlling factor, plots were variable. Plots for trace nmetals
result in no observable trends.

139. Solubility equilibrium model calculations have demonstrated
that by assuming a controlling solid for the appropriate redox condition,
possible trace metal concentrations at a specific location may be pre-
dicted from various water quality parameters. The fundamental consider-
ations for the model include the controlling solid solubilities and in-
creases in trace metal concentrations due to complexing ligands.

140, Results indicate that, in general, the carbonate solubilities
serve as the upper concentration limits for cadmium, copper, lead, nickel,
and zinc. Carbonate and hydroxide solubilities serve as the respective
upper and lower concentration limits for iron; likewise, the carbonate
and oxide solubilities can determine the upper and lower concentration
limits for manganese. With metal sulfides serving as the assumed
controlling solids under reduced environmental conditions, the pre-
dicted trace metal concentrations were remarkably close to the measured

values for cadmium, copper, lead, nickel, and zinc. Metal sulfide
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calculations which were orders of magnitude below the saturation limit
may be due to the arbitrary selection of sulfide concentrations for each
sample, or that equilibrium was not attained.

141. Adsorption may further reduce the predicted concentrations
and inclusion of other ligands may increase the predicted concentrations.
More information in these two areas is needed to provide better insight

into the system.
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PART V- CONCLUSIONS

142. Water quality degradation from the disposal of dredged
material can be categorized in terms of surface and groundwater impair-
ment. The purpose of this study was to assess the potential degradation
of groundwaters from this disposal practice.

143. Results from the groundwater study indicated that an increase
in the level of dissolved solids is quite likely. Among those identified
were chloride, sodium, and potassium. The degree to which these ions
may impact groundwater is a factor of the disposal setting; a freshwater
disposal environment may be more sensitive than a saline environment.
Dilution appears to be the major controlling factor for these three ions.

144. Calcium and magnesium in the groundwater represent another
water quality problem, primarily due to their contributionto water
hardness. Calcium concentrations in the groundwaters were found to
be affected by dissolution of calcite and 1ion exchange. Magnesium trans-
port was suspected to be controlled by ion exchange and dissolution of
magnesium solids. Dilution also seemed to regulate their concentra-
tions in groundwater.

145. Of the trace metals analyzed, manganese and possibly iron
pose the greatest impact upon groundwater qualijty. The majority of
the analyzed samples were found to contain manganese and iron concen-
trations higher than the recommended EPA drinking water quality stan-
dards. Controllingmechanisms for these two constituents indicated
that the solubility of the metal carbonates regulates the observed

values. Disposal of dredged material could create environmental
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conditions (pH and Eh) that are favorable for the formation of carbonate
solids, which are among the most soluble species of iron and manganese
solids.

146. Copper, cadmium, lead, nickel, mercury, and zinc groundwater
concentrations were found to exist in levels which do not present water
quality problems. By utilizing carbonate solubilities for the upper
concentration limit and sulfide solubilities for the lower, most concen-
trations were nearer the calculated sulfide solubilities. Complexation
and precipitation/dissolution are believed to represent the major
controlling factors. Equilibrium solubility equations showed that car-
bonate solubilities represented the upper concentrations values for
cadmium, copper, lead, nickel, and zinc. The lower concentration limits
for manganese and iron were regulated by oxide and carbonate solubilities.
Many of the observed lower concentrations were assumed to be due to
adsorption on soil particles while the inclusion of soluble organic
ligands may account for the higher concentrations.

147. Levels of potassium, total organic carbon, sodium, nitrate,
chloride, magnesium, calcium, alkalinity, lead, 1iron, and manganese
appeared to affect indigenous groundwaters as a result of the disposal
of dredged material. The observed concentrations, however, did not
represent a hazard to the water quality.

148. Analyses of chlorinated hydrocarbons (e.g., PCB's, DDT, DDE,
and DDD) revealed that concentrations were below the detection limits
in nearly all samples. Chlorinated hydrocarbons are not expected to
pose a water quality problem due to their strong affinity to clay

and organic matter.
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149. Dilution and equilibrium solubility modeling appeared to be
satisfactory for partially explaining the observed values for certain
constituents in groundwater samples.

150. Review of the data from the groundwater sampling program, in
addition to the earlier sampling effort, provided several apparent
observations:

a. Manganese and 1iron represent potential groundwater

impairment problems; the degree is based primarily
upon the hydrological system characteristics and

groundwater use.

b. Dilution may be used to explain the observed
concentrations of CI, Na, Mg, and K.

c. Solubility models can be used to provide boundary
concentration values for the trace metals.

d. Chlorinated hydrocarbons do not represent a ground-
water quality problem in the hydrological settings
studied. A near-to-surface groundwater could provide
a transport mechanism from the upper soil layers
and subsequently pose a potential problem.

|

Disposal of saline dredged material into a freshwater
environment could impact groundwater quality, especially
when porous soils are present.
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Appendix A.
Groundwater Analysis for Selected Parameters

at the Four Case Study Sites
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Appendix B.

Solubility Equilibrium Graphs for Cd, Cu, Fe, Mn,
Ni, Pb, and Zn
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Appendix C.

Results of Solubility Equilibrium Concentrations
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