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Abstract: This report introduces concepts, principles, and approaches for 
addressing uncertainty in decision making. The sources of uncertainty in 
decision making are discussed, emphasizing the distinction between 
uncertainty and risk, and the characterization of uncertainty and risk. The 
report provides a brief overview of decision theory and presents a practical 
method for modeling decisions under uncertainty and selecting decision 
alternatives that optimize the decision maker’s objectives. The decision 
modeling methods introduced in this paper are suitable for both data-rich 
and data-poor decision environments. This report describes how to 
analyze the sensitivity of a decision model to improve understanding of the 
decision problem and build confidence in the conclusions of an analysis. 
Principles of adaptive management and adaptive engineering are 
discussed from a decision analysis perspective. Examples are provided to 
demonstrate how these methods could be applied within the U.S. Army 
Corps of Engineers. 

 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 
 
DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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1 Introduction 

Why uncertainty matters 

Uncertainty is often an unavoidable factor in making risk management 
decisions. The U.S. Army Corps of Engineers (USACE) makes risk 
management decisions on a routine basis. For example, these decisions are 
made in the process of managing the nation’s navigation system, selecting 
flood risk management alternatives, designing and operating dams and 
reservoirs, and selecting ecosystem restoration strategies. Uncertainties 
concerning the performance of navigation, flood control, and ecological 
systems arise from inherent variability in the processes that affect those 
systems (e.g., weather patterns, economic trends, etc.) and incomplete 
knowledge of these processes.  

A sound approach to rational decision making requires a decision maker 
to establish decision objectives, identify alternatives, and evaluate those 
alternatives with respect to those objectives. Often, there is much uncer-
tainty in forecasting the outcomes of alternatives, particularly when decis-
ions are complex. Such decisions are said to be risky because the outcome 
following a choice may result in a potential loss, including lost opportun-
ities or sub-optimal outcomes. The purpose of this report is to present 
methods and approaches that enable a decision maker to make choices 
under uncertainty with confidence. The methods described in this paper 
take into account uncertainty in the forecasted decision outcomes and the 
decision maker’s individual preferences with respect to risk. The methods 
presented in this paper do not guarantee that the outcome of a particular 
risky decision will be optimal or “good,” but only that the decision will be 
rational in the face of uncertainty and that repeated application of these 
methods will maximize the decision maker’s welfare over the long run.  

 Risk-informed decision making 

A variety of methods might be used to try and overcome the challenges 
that uncertainty poses for decision makers. On one end of the spectrum 
are probabilistic risk and decision analysis methods. On the other end of 
the spectrum are ad-hoc methods (those developed specifically for a parti-
cular decision) and even intuition, if that can be called a method. In 
contrast to probabilistic risk and decision analysis, ad-hoc methods and 
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intuition are unlikely to provide a defensible basis for decision making. 
This is particularly true in cases where decision makers hold the public 
trust, which is the case when potential losses would be distributed across a 
population that may have had little or no input into a decision process. In 
such cases, the use of a rational and rigorous approach to decision making 
is needed - both to protect the decision maker and to protect the public. 

Probabilistic risk and decision analysis is the most (and some would say 
“the only”) rigorous engineering approach to difficult decision-making 
problems involving uncertainty. This report provides a brief introduction 
to these concepts and analytical methods and demonstrates the potential 
value of these methods using examples. This report stresses the develop-
ment and use of decision models to explore the sensitivity of a decision 
and its potential outcomes. Like all forms of modeling, decision modeling 
requires skill and even some degree of artistry. Throughout the process, it 
is important to remember that the decision modeling activity is not about 
“getting the answer.”  Rather, it is ultimately about learning more about 
the decision problem itself. A good decision model will lead the decision 
maker to a more sophisticated understanding of his particular decision 
problem by enabling him to pick the problem up and explore it or inspect 
it from a variety of different angles. This exploration of the decision 
problem through sensitivity analysis is eventually what builds confidence 
in the recommendation on the part of decision makers and stakeholders.  

It is important to note that the decision modeling described in this paper is 
not a substitute for a decision-making process or a decision maker. These 
methods help to provide structure to the relevant information and to 
increase the level of understanding about the choices that are being made. 
These methods are not a substitute for the decision maker because, ultim-
ately, the decision maker’s values must be taken into account. In this 
report, the emphasis on values is with respect to the level of risk aversion 
that a decision maker may have. Two decision makers using the same 
decision model can reach different conclusions depending upon risk 
preferences. 

Decision analysis methods also have much to offer decision makers and 
stakeholders who must construct preferences or achieve consensus 
through common understanding of a decision problem. Decision analysis 
methods assist decision makers and stakeholders to construct their 
preferences by learning more about the alternatives, the consequences, 
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and their probabilities. Decision analysis methods also assist decision 
makers and stakeholders to reach consensus by revealing where differ-
ences in stakeholder opinions and values really matter (or don’t matter) 
and facilitating negotiation and focusing discussion on the critical issues. 

Organizing the analysis 

In the context of using risk and decision analysis to support decision 
making, four major steps can be considered: 

1. Framing the decision problem; 
2. Modeling the decision; 
3. Analyzing and interpreting the results; 
4. Communicating the results to decision makers. 

The focus of this report is primarily directed at steps 1 through 3. How-
ever, communicating the results to decision makers is equally important. A 
thorough and well executed analysis that is poorly communicated will not 
provide decision makers with the understanding they need to address 
uncertainty with confidence. 

Considerable effort may be required to implement some of the analyses 
described in this report. This effort to provide decision makers with a 
comprehensive understanding of the decision problem and the relevant 
uncertainties should be justified by the potential costs of making a poor 
decision. This goal can be met without producing the perfect analysis. 
Investments in analyzing a decision problem should reflect the magnitude 
of potential losses associated with choosing a sub-optimal alternative. 
Higher opportunity costs justify greater investments in decision analysis. 

In addition to the question of how much to invest in analyzing the 
problem, the timing of that investment is also critical. The risk and 
decision analysis approaches and practices described in this report will 
yield the greatest value to decision makers when they are incorporated at 
the very beginning of the project. How the decision problem is framed at 
the beginning of a project will determine what types of analysis should or 
can be performed as well as what data will be needed to support the 
analysis and the ultimate decision.  
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Quantitative vs. qualitative analysis 
The methods described in this report are geared towards the quantitative 
analysis of decision problems. Some elements of problems are more amen-
able to quantification than others. However, there are often ways of 
addressing qualitative issues quantitatively and the only barrier to imple-
menting these methods is often a lack of awareness on the part of analysts 
that these methods exist. For example, risk preferences among stake-
holders have often been ignored or treated qualitatively. This report 
discusses the utility function, which incorporates a risk tolerance para-
meter that can be used to reflect a decision maker’s preference with regard 
to accepting risk. As another example, consider ecological outcomes of 
decisions that are often described as being “non-monetizable.” Methods 
exist to quantify and monetize the benefits and costs of any ecological 
decision outcome, although it can sometimes be very difficult to do so. 
Sometimes, it may in fact be truly impractical or impossible to address 
qualitative issues in a decision problem quantitatively. It is beyond the 
scope of this report to address strategies or techniques for addressing 
qualitative elements or issues in decision analysis unless they can be 
described quantitatively. However, a credible decision will consider all of 
the important components of a decision problem, not just those that are 
conveniently quantified. 

Organization of this report 
This report is organized as follows. Chapter 2 addresses the concepts of 
uncertainty and risk emphasizing the different sources of uncertainty, the 
distinction between uncertainty and risk, and the characterization of uncer-
tainty and risk. Chapter 3 defines “decision making under uncertainty” and 
introduces decision theory and decision analysis. Value functions and utility 
functions that capture information about a decision maker’s attitudes 
toward risk are central to this discussion. Chapter 4 introduces a practical 
approach to modeling decisions under uncertainty. This section walks 
through the steps of developing a decision model and applying the concepts 
discussed in Chapters 2 and 3. Chapter 5 presents a simple example of 
decision analysis to illustrate use of the methods. Chapter 6 discusses how 
probabilistic decision analysis can be used to implement adaptive manage-
ment and adaptive engineering principles. Chapter 7 describes the applica-
tion of these methods to a dredging decision to demonstrate how the 
decision making under uncertainty methods might be used to address day-
to-day decision problems in USACE. Chapter 8 discusses practical aspects 
of implementing the techniques discussed in this report. 
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2 Uncertainty and Risk 

What is uncertainty and what are the types of uncertainty? 

Uncertainty is a lack of knowledge. Among the various fields that are con-
cerned with uncertainty, there is no common agreement on the terminol-
ogy, definition, or classification of uncertainty. Several useful typologies 
exist (Ascough et al. 2008). Typologies are intellectual constructs; there-
fore, it is appropriate to choose the typology that is most useful given the 
purpose of the work. This report adopts a typology that has been widely 
used and has proven to be a useful way of thinking about uncertainty in 
the context of quantitative analysis.  

Uncertainty can be classified either as input uncertainty or model uncer-
tainty. Input uncertainty arises from a lack of knowledge about the true 
value of quantities used in analyzing a decision. Often, these quantities are 
found in scientific models that are used to support a decision, such as 
hydrologic and environmental models. Model uncertainty is uncertainty 
about the form of the model used to support the decision. In other words, 
model uncertainty is uncertainty about what variables, assumptions, and 
functions best characterize the processes being modeled. In practice, 
model uncertainties are much more difficult to deal with than input uncer-
tainties because they require the analyst to propose and evaluate compe-
ting models (Casman et al. 1999). The discussions and examples in this 
report emphasize how to address the problem of input uncertainty. How-
ever, this does not imply that model uncertainty is less important and the 
techniques that might be used to address model uncertainty are often 
similar to those discussed in this report.  

Input uncertainty is often attributed either to heterogeneity in nature (nat-
ural variability) or to a lack of knowledge.1

                                                                 
1 Uncertainty attributed to natural variability is called aleatory uncertainty. Uncertainty attributed to a 

lack of knowledge is called epistemic uncertainty. 

  If the uncertainty in an input 
variable is attributed to natural variability, then that input variable cannot 
be known precisely because the true value of that quantity in nature varies 
spatially and/or temporally. Natural variability cannot be controlled or 
eliminated; therefore, uncertainty attributed to natural variability cannot 
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be reduced by obtaining more information. In contrast, knowledge uncer-
tainty can always be reduced by obtaining more information, although it 
may be very difficult, expensive, or physically impossible to do so in prac-
tice. Input uncertainty may be described as being attributed to either 
heterogeneity in nature or a lack of knowledge, but model uncertainty is 
always attributed to a lack of knowledge. Input uncertainty can usually be 
attributed to both natural variability and a lack of knowledge. 

Uncertainties can be assessed through observations and described in 
terms of frequencies and probability distributions. However, risk and 
decision analysts are often concerned with quantities that cannot be 
observed, measured, or counted. Limits on the ability to observe quantities 
in nature may arise in practice because it is too costly, time consuming, or 
technologically infeasible to make the observations, or in principle because 
that quantity in which we are interested, such as the probability of a rare 
event or condition occurring in the future, cannot be observed. Therefore, 
most risk and decision analysts adopt a Bayesian view of probability in 
which probability describes an individual’s “degree of belief.”  This is also 
known as subjective probability.  

The Bayesian view of probability holds that probability measures the 
confidence that an individual has in the truth of a particular proposition. 
For example, an individual might assess the probability that it will rain the 
following day using information about the extent of cloud cover on the 
evening prior to that day. In contrast to the Frequentist view of proba-
bility, which holds that probability can only be assessed using information 
about the frequency of an event or condition, subjective probabilities are 
not so constrained. Subjective probabilities can also be assessed without 
reference to whether or not the events are determined or somehow known 
by others (Miles 2007). From this perspective, uncertainty describes the 
state of the observer in relation to that which is being observed, rather 
than the state of that which is being observed. Savage (1954) showed that 
subjective probabilities can conform to Kolmogorov’s axioms of 
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probability1

The extension of frequentist probability theory to the analysis of uncer-
tainty in “things” that cannot be observed or counted has been contentious 
and problematic. However, subjective probability assessments and distri-
butions are essential tools for risk and decision analysts because the 
observations necessary to make objective probability assessments are not 
always possible or feasible. Subjective probabilities should be based on 
available evidence and previous experience with similar events, they must 
be plausible, and they must conform to Kolmogorov’s axioms (Morgan and 
Henrion 1990, Garvey 2008). The invitation to use subjective probabilities 
must not be seen as an invitation to be arbitrary or otherwise to avoid or 
neglect evidence. Subjective probability assessments must be founded on 
some form of defensible reasoning or verifiable experience. If it is per-
ceived that probabilities are based on limited insight and experience, they 
can undermine an analysis.  

 and, therefore, frequentist theory can be extended to analyze 
degree of belief.  

Subjective probabilities are not appropriate to describe volitional uncer-
tainty, which is uncertainty on the part of the decision maker about future 
preferences or actions. However, decision makers can assess subjective 
probabilities regarding what somebody else might do (Bedford and Cooke 
2001, p. 35). Subjective probabilities should not be considered uncertain 
because, by definition, a decision maker’s beliefs must be known to him-
self (De Finetti 1974). However, objective probabilities (i.e., frequencies) - 
those known from observations - can be uncertain. A Bayesian’s subjective 
probability distribution about an empirical quantity should converge with 
a frequentist’s objective probability distribution as the evidence used in 
developing the two distributions converges (Morgan and Henrion 1990). 

                                                                 
1 The axioms of probability express what must be true for the theorems of probability calculus to hold. 

The theorems are discussed by Garvey (2008). The axioms can be summarized as follows: 
1. The probability of any event A in a set of events, Ω, is a non-negative number in the interval 

zero to one: 1)(0 ≤≤ Ap . 
2. The elements of the set Ω are collectively exhaustive such that, the probability of the 

occurrence of an element of the set is one:  Ωp 1 . 

3. For a mutually exclusive set of  , , ,...,k K 1 2 3 events, the probability of an aggregate 
of those events is the sum of the probabilities of the individual events: 

   ... ...
K

i N k
k

P A A A A p A   1 2  
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Other authors have noted that the use of subjective probabilities is often 
complicated by ambiguity in the quantity for which uncertainty is being 
assessed. Ambiguity is not a type or source of uncertainty because it can be 
removed by careful definition of the quantity in question (Bedford and 
Cooke 2001). Morgan and Henrion (1990) describe a simple “clarity test” 
for evaluating whether a quantity is sufficiently well-specified to assess 
valid subjective probabilities. “Imagine a clairvoyant who knows all facts 
about the universe, past, present, and future. Given the description of the 
event or quantity in question, could this clairvoyant state unambiguously 
whether the event had (or will) occur, or could this clairvoyant give the 
exact numerical value of the quantity?  If so, then the quantity or event is 
sufficiently well specified.”  These authors attribute the clarity test to 
Howard and Matheson (1984). 

Uncertainty about the true value of an input variable can be described in 
several ways. Frequency distributions, statistical variances, coefficients of 
variation, confidence intervals, and probability distributions are common-
ly used to describe the uncertainty in quantities. Of these, probability 
distributions offer the most complete and compact form of representation. 
Figure 1 illustrates three ways to characterize uncertainty in a random 
variable. Figure 1(a) is a histogram, which is useful in describing uncer-
tainty in discrete random variables. Figure 1(b) is a probability density 
function (PDF), which is a particular class of functions that possess the 
property that integration of that function over all possible values yields 
one. The PDF is useful for describing uncertainty in continuous random 
variables. Integration of the PDF yields a cumulative distribution function 
(CDF), shown in Figure 1(c). The CDF gives the probability that x is less 
than some amount. 
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Figure 1. Three methods of characterizing uncertainty in a random variable. 
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What are sources of uncertainty in decisions? 

Uncertainty in decision making can be attributed to uncertainty in the 
input variables and models used in simulating decision outcomes. For 
example, life-cycle decisions that maximize the net present value of 
national economic development (NED) benefits over a 50-year planning 
horizon may be sensitive to the models and input values used to forecast 
economic growth, population growth, and investment. Similarly, ecolo-
gical restoration decisions may be based on forecasts of ecological effects, 
which must be modeled. Modelers usually attach a considerable amount of 
uncertainty to input values used in these models. Uncertainty in the out-
puts of models used to simulate decision outcomes depends upon the 
sensitivity of those models to the uncertain inputs and the amount of 
uncertainty in those inputs. This report does not discuss the propagation 
of uncertainties in models. 

While it is important to know what the sources of uncertainty in a decision 
are, it is just as important to know where the sources of uncertainty are 
not. As discussed above, there can be no uncertainty about subjective 
probabilities or volition. Similarly, there can be no uncertainty in value 
parameters such as the discount rates that reflect a decision maker’s rate 
of time preference for money or weights used in multi-attribute value 
functions that reflect a decision maker’s willingness to trade off among 
components of value. The underlying assumption of decision analysis is 
that a decision maker is known and knows his or her values/preferences. 
Analysts who are preparing decision analyses for third parties or collective 
decision makers may be unclear about what value parameters to use. An 
important point emphasized in this report is the need for analysts to 
report the sensitivity of their decision models to assumptions about sub-
jective probabilities and value parameters. Methods of doing this will be 
demonstrated through example later in this report. Doing so helps deci-
sion makers focus discussion on the critical regions of the decision land-
scape where uncertainties matter because they might change the decision 
and set aside differences in opinion when those differences wouldn’t 
change the optimal decision. 

There can be no uncertainty in the decision frame. The decision frame is 
the set of decision alternatives and objectives. The ability to develop 
frames that provide a meaningful simplification of more complex prob-
lems requires skill in decision modeling and a deep understanding of the 
decision problem. The set of alternatives is usually a relatively small subset 
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from the decision space, the set of all possible decision alternatives. A 
decision objective provides a basis for evaluating each alternative. For 
example, the objective of a decision may be to maximize the net present 
value of national economic development benefits over the planning 
horizon. At the beginning of a decision-making process, there may be 
ambiguity about what decision frame to use, but the decision maker must 
have clarity on the decision frame before an analysis of alternatives begins. 
The decision-making process often involves an iterative learning process 
through which decision makers and analysts refine and update the deci-
sion frame. It is important to allow flexibility in the decision-making 
process so that this can occur. 

What is risk and what is the distinction between risk and uncertainty? 

A risk is a potential adverse consequence that may or may not be realized 
in the future. An adverse consequence is a loss of some sort. A decision 
maker faces a risk if the outcome of a decision is uncertain and may be 
adverse. In a paper that was published in the first issue of the journal Risk 
Analysis, Kaplan and Garrick (1981) suggested that risk can be fully 
defined by a set of three things, including: 1) a set of mutually exclusive 
and collectively exhaustive scenario conditions under which the possible 
outcomes may be realized, 2) a set of outcomes for each possible scenario, 
and 3) a probability of occurrence for each possible scenario. Using this 
definition, risk can be described using a loss-exceedance curve. In a loss-
exceedance curve, scenario outcomes involving potential losses are plotted 
on the x axis and the probability of exceeding those losses is plotted on the 
y axis (Figure 2). The loss-exceedance curve is sometimes called a risk 
curve.  
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Figure 2. Three risk curves. 
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Figure 2 illustrates three risk curves, which could represent the potential 
losses associated with three decision alternatives (A, B, and C). The y-
intercept gives the probability that the costs associated with choosing an 
alternative will exceed the benefits of that alternative. In Figure 2, Altern-
ative C entails the largest potential losses. Alternatives A and C are riskier 
than Alternative B because these alternatives lead to larger losses with 
higher probabilities. It is important to note that these risk curves by 
themselves do not provide the decision maker with sufficient information 
to choose among the three alternatives. A decision maker also needs infor-
mation on the potential benefits of each alternative and their probabilities. 
An understanding of the decision maker’s attitudes toward accepting risks 
is also needed. 

What is risk analysis? 

Risk analysis is an interdisciplinary field of study. Individuals who practice 
risk analysis attempt to quantify, manage, and understand financial, 
economic, human health, and environmental risks. The field of risk 
analysis includes risk assessment, risk management, and risk commun-
ication (Pate-Cornell and Dillon 2006). A risk assessment provides the 
answer to three questions: 1) What could go wrong and how could it 
happen? 2) How likely is it to happen? and 3) What are the consequences 
should it happen?   Risk assessments can be either qualitative or quanti-
tative, but effective use of qualitative risk assessment techniques generally 
requires a good understanding of quantitative risk assessment techniques, 
the objective of which is to obtain a distribution of probabilities over 
potential losses. Risk management is a process of managing the exposure 
to risks so that economic benefits are maximized. Among other things, risk 
management includes formulating, evaluating, selecting, and implement-
ing risk management alternatives. Risk communication involves 
communicating information about risks, emphasizing that communication 
is a two-way interactive process involving listening and learning from 
stakeholders as well as presenting information to stakeholders. 

Risk management decisions need to be made within the context of the 
social perception of the particular risk at issue. An individual’s perception 
of a risk and the collective perceptions of society affect the extent to which 
society accepts or tolerates risks. Acceptance can be described as a 
function of the extent to which the exposure is voluntary, the dread 
associated with the outcome, knowledge about the processes generating 
the outcomes, the extent to which the individual can exert control over the 
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outcome, the potential benefits that acceptance of the risk provides, the 
number of deaths caused in a typical year, and the number of deaths 
caused in a disastrous year (Starr 1969, Fischoff et al. 1978, Slovic 1987). 
Society adopts different standards for managing and accepting these 
different risks. 

What risks are associated with decision making? 

This report is concerned particularly with choosing alternative courses of 
action in the face of uncertainty about the outcomes that will be realized as 
a result of those actions. These uncertainties are attributed to uncer-
tainties in the inputs and model forms used in forecasting the outcomes. 
Alternatives are risky if a decision maker (an individual, corporation, or 
society) could incur a financial or economic loss as a result of choosing 
that alternative. Financial losses are distinguished from economic losses 
because the former are limited to a comparison of project revenue and 
expenses, whereas the latter involve an evaluation and comparison of a 
much broader range of benefits and costs, including those that might be 
classified as social or environmental. 

Risk-informed decisions are based on information about uncertainty in the 
outcomes. Decisions themselves are risky if the decision maker could 
sustain an opportunity cost as a result of choosing an alternative that leads 
to a sub-optimal outcome. Opportunity costs are economic costs that may 
be realized when resources are invested in one project and it turns out that 
greater net benefits could have been realized by investing those funds in 
an alternative project. Decision analysis should reveal the potential 
opportunity costs associated with an alternative. This is accomplished 
through sensitivity analysis.  
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3 Decision Theory and Decision Analysis 

What is decision making under uncertainty? 

A decision is a choice between two or more courses of action. Decision 
making under uncertainty is the act of choosing between two or more 
courses of action when the outcomes of those actions are uncertain. 
Figure 3 introduces the decision tree, a diagram that helps to structure the 
decision when uncertainties are present. This particular decision is 
between a “sure thing” [A1] and a lottery [A2]. The sure thing rewards 
individuals with a guaranteed amount, x1, while the outcome of the lottery 
is uncertain. Under the lottery, the individual faces a chance to receive a 
larger reward with probability p or no reward with probability 1-p. The 
expected value of a lottery is the probability weighted sum of possible 
outcomes: [ ] ( ) 322 1 xppxAE −+= .  
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Figure 3. A decision tree showing two alternatives and three outcomes. This 

figure illustrates a choice between A1, which has a certain outcome, x1, and A2, a 
lottery, which has one of two possible outcomes, x2, which occurs with probability 

p, or x3, which occurs with probability .1 p−   

What is decision theory? 

The study of how individuals make decisions when faced with a choice that 
has an uncertain outcome such as that illustrated in Figure 3 is known as 
decision theory. Prior to 1713, the conventional wisdom was that indivi-
duals choose actions based on the expected value of the outcomes of those 
actions. This notion was challenged in the St. Petersburg paradox, which 
proposed a game in which a fair coin is tossed until it comes up heads. The 
payoff is 2n, where n is the number of times the coin is tossed. 
Mathematically, this game has an infinite expected payoff. The paradox 
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was this: If people choose actions that maximize the expected value of the 
outcome, then why are most individuals not willing to pay any amount of 
money to play this game that has an infinite expected payoff?   

The St. Petersburg paradox was resolved in 1738 by Daniel Bernoulli, who 
introduced the concept of a value function to describe the diminishing 
marginal value of wealth. He proposed that an individual’s level of 
satisfaction can be described as a function of wealth, that there is a 
diminishing marginal satisfaction associated with increasing wealth 
(implying that satisfaction has upper and lower bounds), and that indivi-
duals make choices to maximize expected levels of satisfaction rather than 
expected value of wealth.  

Defining the outcomes of a decision in terms of Bernoulli’s value function 
did not resolve all of the issues. Bernoulli’s theory indicated that people 
should be indifferent between the sure thing and a lottery with an identical 
expected outcome. However, it was widely observed that individuals who 
faced this particular decision chose the sure thing over the lottery.1

1. Ordering: The decision maker is capable of expressing whether he 
prefers outcome A over outcome B, or whether he is indifferent between 
the two outcomes. This means that the decision maker knows his 
preferences over outcomes. 

  In 
1947, von Neumann and Morgenstern addressed this issue by extending 
the concept of the value function to incorporate attitudes toward both 
wealth and risk. The function that measures attitudes toward wealth and 
risk is called a utility function. Von Neumann and Morgenstern also 
developed a set of axioms that explained what a decision maker must 
believe in order for the theory of expected utility maximization to be true. 
An axiom is a statement that is so apparently true on its face that it 
requires no proof. The axioms are:  

2. Transitivity: If the decision maker prefers outcome A to outcome B, and 
outcome B to outcome C, then the decision maker prefers outcome A to 
outcome C. 

                                                                 
1 This choice is illustrated in Figure 3. An individual is compelled to choose between a guaranteed 

outcome, x1>0, and a lottery that has an outcome of either x2 = 0 with probability p or x3 with 
probability p−1 . If x3 and p are chosen so that the expected value of the lottery is equal to x1, most 
individuals choose the sure thing over the lottery.  
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3. Continuity: Given a choice between a sure thing with outcome x1 and a 
lottery with two outcomes, x2 and x3, there exists a probability of realizing 
outcome x2 such that the decision maker is indifferent between accepting 
the lottery and accepting the sure thing. 

4. Substitution: If a decision maker is indifferent between two outcomes, 
then one outcome can serve as a substitute for the other outcome. If a 
decision maker is indifferent between an outcome and a lottery, the lottery 
can substitute for the event that leads to that outcome. 

5. Monotonicity: If two lotteries yield the same outcomes, then given a 
choice between the two lotteries, a decision maker prefers the lottery with 
the higher probability of the preferred outcome. 

6. Reduction of compound events: Complex events (events consisting of 
a mixture of lotteries) can be reduced to a simple event using standard 
probability manipulations without affecting a decision-maker’s 
preferences. 

7. Invariance: Preference among uncertain events can be established by 
knowing the utility of the outcomes and their probabilities. 

8. Finiteness: No outcome is infinitely bad or infinitely good. 

Von Neumann and Morgenstern (1947) assumed that all probabilities were 
objectively determined. The revolutionary contribution of Savage (1954) 
was to extend the von Neumann and Morgenstern expected utility 
maximization model by introducing subjective probabilities. The 
subjective expected utility maximization model is the foundation of 
modern decision analysis. There are two major branches in the field of 
decision analysis. Normative decision theory studies how decisions should 
be made and focuses on developing models of rational choice, algorithms, 
and analytical tools that lead decision makers to choices that are consist-
ent with the axioms of rationality. Descriptive decision theory studies 
models that explain how people make judgments and decisions in “real 
life,” often through observations that are made in controlled laboratory 
settings. The two fields are fairly distinct. Descriptive decision theory is 
largely dominated by social, behavioral, and cognitive psychologists. 
Normative decision theory is largely dominated by economists, operations 
researchers, engineers, and statisticians.  

Laboratory studies have shown that individuals often violate the axioms of 
rationality when making decisions under uncertainty. The systematic 
description of such observations may lead to the formation of a paradox. 
For example, Maurice Allais and Daniel Ellsburg each identified paradoxes 
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that are still unresolved (Nau 2007). Some studies have attributed devia-
tions from rationality to the use of heuristics to assess probabilities. A 
heuristic device is a rule of thumb, a simplification, or an educated guess 
that reduces the cost of searching for an optimal solution or the precise 
answer to a complex problem. Tversky and Kahneman (1974) described 
three heuristic devices that are commonly used in assessing probability 
and concluded that these heuristics introduced systematic bias into proba-
bility estimates, yielding decisions that do not conform to rationality.  

• Representativeness is a device by which the probability of an 
object’s membership in a larger group is based on the degree of 
similarity between that object and the larger group. Error arises from 
ignoring basic factors that should logically determine those 
probabilities, such as base rate, sample size, predictability, etc.  

• Availability is a device by which the probability of an event or the 
frequency of an object’s occurrence is based on the ease with which one 
can recall a similar event or imagine its occurrence. Errors arise 
because frequency and probability are determined by factors other 
than one’s ability to recall events or imagine things.  

• Adjustment and anchoring is a device by which an initial estimate 
of probability is based on a generalization and then adjusted to account 
for conditional factors. Errors arise because individuals tend to under-
estimate the level of adjustment that is required, which leads to 
“anchoring” on the initial value. 

The fact that individuals have been shown to deviate from rationality when 
making decisions involving risk does not undermine the logic of the axioms 
and does not diminish their value as a normative basis for prescriptive 
analysis when uncertainties are present. The axioms continue to provide a 
well understood and widely accepted standard for evaluating preferences 
over outcomes and subjective expected utility maximization provides a 
normative and defensible standard for making decisions under uncertainty. 

What is decision analysis? 

Decision analysis is a collection of analytical problem-solving techniques 
for probability and preference assessment and decision modeling. Howard 
(2007) describes it as a logical procedure for balancing the factors that 
influence a decision. The procedure incorporates information about 
uncertainties, values, and preferences in a basic structure to model the 
decision. The essence of the procedure is the construction of a structural 
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model of the decision in a form that is suitable for computation and 
manipulation. The realization of the structural model is often a set of 
computer programs. The goal of practicing decision analysis is to help 
decision makers make defensible decisions that are rational in the sense of 
utility theory. Decision analysis came about from the merging of systems 
analysis and statistical decision theory, and it draws on the disciplines of 
mathematics, economics, behavioral psychology, and computer science 
(von Winterfeldt and Edwards 2007).  

Decision analysis methods are specifically founded on normative decision 
theory or support the application of those techniques. Examples include 
means-ends networks and objectives hierarchies for structuring decision 
objectives, consequence tables for evaluating multiattribute value or utility 
functions, decision trees and influence diagrams for decision making 
under uncertainty, and event trees, fault trees, and belief networks for 
probabilistic inference (von Winterfeldt and Edwards 2007). Applications 
of decision analysis techniques are prescriptive because they indicate what 
a decision maker should do if he accepts the axiomatic foundations of 
decision theory. Methods such as analytical hierarchy process (AHP) 
(Saaty 1980), Dempster-Shafer theory (Dempster 1968, Shafer 1976), and 
fuzzy sets (Zadeh 1965) do not necessarily lead decision makers to rational 
choices and are therefore excluded from the field of decision analysis 
(Howard 2007, Lund 2008).  

Although decision analysis may be informed by the results of a risk 
analysis, decision analysis is distinguished from risk analysis by several 
features. Decision analysis yields a choice among alternative courses of 
action while risk analysis yields a probability distribution over potential 
outcomes. Whereas risk analysis can be completed without the input of the 
decision maker, decision analysis cannot (Pate-Cornell and Dillon 2006). 
In decision analysis, the decision maker is known and must be explicit 
about his preferences by providing a value or utility function. Therefore, 
decision analysis does not relieve the decision maker of responsibility for 
making a decision. Faced with the same decision and armed with the 
techniques of decision analysis, two decision makers could choose two 
different courses of action. Both could be equally valid. How could this be? 
The answer is that the decision makers have different values. Decision 
analysts use value functions to describe a decision maker’s attitudes 
toward wealth. 
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What is a value function? 

A value function is a real-valued mathematical function that is defined 
over an attribute scale and describes how much value a decision maker 
realizes from achieving different attribute levels. A value function is illus-
trated in Figure 4. The y-axis is a value scale from 0 to 1 and the x-axis is 
an attribute scale, which represents wealth. Attributes may be monetary or 
non-monetary. Attribute scales may be either cardinal or ordinal. Cardinal 
scales are interval or ratio scales that express the strength of preference 
between two outcomes. Ordinal scales are scales that only express a 
preference order, but not the strength of preference among attribute 
levels. Attribute scales may be either continuous or discrete. 
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Figure 4. A monotonically increasing value 
function VX(x) over outcomes expressed in 

terms of an attribute x. The x-axis is 
sometimes defined as wealth. 

The value function ranges from 0 to 1, with 0 representing the value of the 
least preferred outcome and 1 representing the value of the most preferred 
outcome. All value functions are monotonic, but not all value functions are 
increasing. Monotonically decreasing functions express the idea that more 
of an attribute is less desirable. This report assumes that value and utility 
functions are single attribute and do not deal with the case of multi-
attribute functions. Multi-attribute value and utility functions are 
discussed at length by Keeney and Raiffa (1993). 

The value increment is the change in value associated with an increase in 
the attribute level. In Figure 4, the value function is concave and the 
increment between a and b is: )()( aVbV XXab −=∆ . This value increment is 
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diminishing as x increases. This is a common characteristic of value 
functions that expresses the concept of diminishing marginal value of 
wealth. 

What is a utility function? 

A utility function expresses an individual’s diminishing marginal value of 
wealth simultaneously with his risk attitudes, which are his attitudes 
toward the magnitude of prospective losses in relation to wealth. The 
utility function is a real-valued mathematical function that is defined over 
an attribute scale and describes how much utility (satisfaction) a decision 
maker realizes by achieving various attribute levels. The definition is 
similar to that of a value function, but the difference between a utility 
function and a value function should become apparent. Figure 5(a) illus-
trates a utility function. The y-axis is a utility scale, measured in units of 
utils, which are arbitrary units of satisfaction. As with the x-axis of the 
value function, the x-axis of the utility function may be cardinal, ordinal, 
continuous, or discrete.  
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Figure 5. A single, risk averse utility function (a) and three alternative utility 

functions illustrating three risk attitudes (b).  

The expected outcome of a lottery with two possible outcomes, a and b, is 
the probability weighted sum of the two possible outcomes: 

[ ] ( )bppaxE −+= 1 . The utility of the expected outcome is: 
( )[ ] ( ) ( ) ( )bUpapUxUE −+= 1 . Figure 5 shows that, for this particular utility 

function, the utility of the expected outcome of the lottery is greater than 
the expected utility of the lottery. The certainty equivalent, xCE, is the 
amount of the certain outcome (x1 in Figure 5) that would make the 
decision maker indifferent between the certain outcome and the lottery. 
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The risk premium is the difference between the expected outcome and 
the certainty equivalent: CExxER −= ][ . It is the minimum amount that a 

decision maker would have to be compensated to accept a lottery over a 
sure thing, or the amount the decision maker would be willing to pay to 
avoid choosing the lottery. 

Figure 5 shows three possible risk attitudes. Risk attitudes describe a 
decision-maker’s preferences with respect to accepting risk. Risk attitudes 
can be risk averse, risk neutral, or risk seeking. 

• Risk averse behavior is described by a concave utility function and 
means that the decision maker would have to be compensated to 
voluntarily accept a lottery in a choice between a sure thing and a 
lottery with equal expected payoffs. This is the most common attitude 
toward risk encountered among individuals. The function has the 
property that CExxE >][ . 

• Risk neutral behavior is described by a linear utility function. The 
decision maker is indifferent between a lottery and a sure thing that 
have equal expected payoffs. This function might be used to describe 
the behavior of insurers and investment banks. The function has the 
property that CExxE =][ , or ( )[ ] [ ]( )xEUxUE = . 

• Risk seeking behavior is described by a convex utility function. This 
function suggests an individual would be willing to pay for the 
exposure to an uncertain outcome that has the same expected outcome 
as an alternative certain outcome. The function has the property that 

CExxE <][ . Risk seeking utility functions might be used to describe 

gambling behavior or utility under debt. 

An implicit assumption of the functions illustrated in Figures 4 and 5 is that 
more is better. This is generally true with regard to money, environmental 
quality, health, crop yields, and many other goods. However, it is also 
possible to develop utility functions for “economic bads,” which are attrib-
utes for which more is worse. Examples of economic bads include pain and 
suffering, property damages, and economic or financial losses, etc. 

Some individuals who study utility have reasoned that an individual’s 
utility function may change over levels of wealth. The Markowitz utility 
function, illustrated in Figure 6(a), is defined in reference to current 
wealth (Markowitz 1952). This utility function exhibits risk aversion 
immediately below current wealth and risk-seeking behavior immediately 
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above current wealth. However, as one moves further from the current 
wealth position, risk attitudes change. If one moves far enough below the 
current wealth position, risk-seeking behavior sets in. If one moves far 
enough above the current wealth position, risk-averse behavior sets in. 

Kahneman and Tversky (1979) and Tversky and Kanheman (1992) 
developed prospect theory to explain why some individuals may have 
utility functions that differ from what is considered to be rational. These 
authors found that individuals tend to value changes in wealth relative to a 
reference point, rather than valuing net wealth, and that “losses loom 
larger than gains.” Individuals exhibit risk-seeking behavior with respect 
to potential gains, but risk-averse behavior with respect to potential losses 
(Figure 6(b)). 1
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  Prospect theory attributes this behavior to: 1) judging the 
value of decisions in terms of deviations from a reference point rather than 
in terms of net wealth, 2) valuing losses differently than gains; and 
3) placing too much importance on low probability outcomes and too little 
importance on moderate and high probability outcomes, rather than 
placing importance in proportion to the probability of the outcome. 
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Figure 6. A Markowitz utility function (a) and the phenomena described by 

Kahneman and Tversky’s prospect theory (b). 

Value functions and utility functions appear similar, but are distinctly 
different. The value function describes a decision maker’s attitude toward 
wealth and the utility function describes a decision maker’s attitude 
toward both wealth and risk. The difference between a utility function and 

                                                                 
1 Some authors emphasize that Kahneman and Tversky’s function is not actually a utility function, but 

rather a value function (Fischer 2004). 
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a value function is apparent in how the decision maker’s preferences are 
assessed (Fischer 2004). The value function can be obtained by asking the 
decision maker a series of questions of the form: “For what amount of x 
would you be indifferent between a dollar amount y and that amount?” 
The utility function can be obtained by asking the decision maker a series 
of questions of the form: “What amount x would be equivalent to having 
either a dollar amount y with probability p or having nothing with probab-
ility p1 ?”  Value and utility functions are typically parameterized 

through the implementation of computer-based surveys designed to assist 
decision makers to assess their preferences. A discussion of these 
preference assessment techniques is beyond the scope of this report. 

All utility functions are value functions, but not all value functions are utility 
functions. All utility functions can be defined as a strictly increasing 
monotonic function of the attribute level or the value function: 

( ) ( ( ))U x f V x (Keeney and von Winterfeldt 2007). Therefore, a utility 

function is equivalent to a value function when the decision maker is risk 
neutral. Value functions and utility functions may have similar functional 
forms and several useful forms exist. A common and convenient form of the 
utility function is the exponential utility function (Garvey 2008). The 
exponential utility function for an economic good can be written as follows: 
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The exponential utility function for an economic bad can be written as 
follows: 
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An implicit assumption in this form of the exponential utility function is 
that the decision maker expresses a constant risk attitude over all levels of 
wealth. This is in contrast to the utility functions proposed by Markowitz 
(1952) and Kahneman and Tversky (1979). In the exponential form of the 
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utility function, ρ is called the risk tolerance parameter. This parameter 
determines the shape of the curve and reflects the combined effects of an 
individual’s attitudes toward wealth and risk. If ρ is positive, the utility 
function is risk averse. If ∞=ρ , the utility function is risk neutral (the 

symbol ∞ means infinity, which can be approximated by a high number 
relative to the maximum possible amount of the attribute xMAX). Utility 
functions with higher values of ρ describe the risk attitudes of individuals 
who have higher levels of risk tolerance. If ρ is negative, the utility 
function is risk seeking.  

Figure 7 illustrates the exponential form of the utility function for three 
different levels of risk tolerance. All three utility functions characterize a 
risk averse individual, but a high value for ρ relative to maximum possible 
level of the attribute or wealth yields a utility function that approximates a 
risk neutral risk attitude (e.g., in Figure 7, this is illustrated for ρ = 1x106). 
The risk tolerance parameter has an intuitive meaning. Consider the decis-
ion to accept or forego a lottery as illustrated in Figure 8. This lottery, A2, 
has an entrance fee (x/2) that is half the potential payoff amount x. The 
risk tolerance parameter of the exponential utility function is approxi-
mately equal to the largest value of x for which the decision maker would 
be willing to accept the lottery (Clemens 1996). 
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Figure 7. An exponential utility function for three possible values of the risk 

tolerance parameter, ρ. The values of the attribute may range from 0 to 
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Figure 8. A choice between a sure-thing 

alternative, A1, which will pay off 0, and a 
lottery, A2, which has a 50% chance of 

paying off x and a 50% chance of costing –
x/2. The risk tolerance is approximately the 
maximum amount x that would induce an 

individual to accept the lottery, A2. 

What risk attitudes should federal agencies adopt? 

A utility function describes the wealth and risk attitudes of an individual. 
The theory leaves unanswered many questions about how groups should 
make risky decisions. A group is a set of two or more individuals with a 
stake in the outcome of the decision. For federal agencies, the stakeholder 
group includes all taxpayers and individuals who are potentially affected by 
a project. At present, there is no widely accepted theory that explains how 
groups should make decisions under uncertainty or how the individual 
utility functions of group members can be aggregated. Both are active areas 
of study in the field of social choice within the discipline of economics.  

How should decision makers in federal agencies confront this problem 
when analyzing decisions under uncertainty?  The “decision engineering” 
approach suggested by Ron Howard is to analyze the decision problem as 
if the group were an individual with its own utility function that is chosen 
by the decision maker (Howard 2007). For a private entity, that utility 
function should represent corporate goals and the acceptable risk levels for 
the corporation (Clemens 1996). Howard (1988) suggests guidelines for 
determining a corporation’s risk tolerance in terms of total sales, net 
income, or equity (Clemens 1996, p. 480). Determining an appropriate 
risk tolerance may be more difficult for a public entity that is working on 
behalf of society because the stakeholders have a much more complicated 
set of interests and utilities that cannot be easily aggregated. 
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Howard’s approach is a practical one, but is not without its problems for 
federal agencies. Decision makers in federal agencies may tend to exhibit a 
relatively high level of risk aversion. This high level of risk aversion might 
be attributed to an interest in preserving an agency’s public image or the 
internal punishment and reward systems within the agency. Risky 
decisions put an agency’s image at stake. When bad outcomes occur, the 
public is often quick to point the finger at the first public agency that can 
be blamed. In anticipation of this, agency leaders may understandably 
adopt a risk-averse attitude. Reward systems within an agency may also 
encourage risk aversion. For example, this might occur when decision 
makers are rewarded for good outcomes and punished for bad outcomes, 
as opposed to being rewarded for making good decisions and punished for 
bad decisions, regardless of the outcome. 

A principal-agent problem exists if decision makers within an agency 
adopt risk attitudes that are more risk averse than those in the society for 
whom they work. A principal-agent problem is one in which the agent (the 
agency) who acts on behalf of the principal (society or taxpayers) has 
incentives that are at odds with those of the principal. If this occurs, the 
economic benefits realized from public investment will be sub-optimal and 
the opportunity costs of these decisions over the long term could conceiv-
ably be quite substantial. The choice of what risk attitudes an agency 
should adopt needs to be addressed at a policy level and is beyond the 
scope of this report. In the absence of any top-down guidance on risk 
attitudes, it should be understood that there are incentive structures 
within agencies that may lead decision makers to adopt risk-averse 
attitudes that lead to sub-optimal outcomes.  

Analysts who are studying risky decisions will typically not have the 
information they need to specify a utility function. Therefore, this report 
recommends that analysts assume a risk-neutral utility function and 
conduct sensitivity analysis on the risk tolerance parameter to simulate 
increasing risk aversion. The question to be addressed through sensitivity 
analysis is whether or not and at what point changing the risk tolerance 
parameter changes the decision. Presenting the decision maker with 
information about what is the optimal solution to a problem for a range of 
risk attitudes enables the decision maker to retain control and responsibility 
for the decision. This approach is difficult when analysts and decision 
makers undertake studies with the objective of “getting the answer,” but is a 
natural outcome when studies are undertaken with the objective of 
developing a comprehensive understanding of the decision problem. 
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4 Decision Analysis: A Practical Approach 
to Modeling Decisions Under Uncertainty 

A decision model is a computational tool designed to assist a decision maker 
in evaluating and exploring the outcomes of the various decision alterna-
tives in light of individual attitudes about wealth and risk and subjective 
assessments of uncertainty. Like all models, decision models are simplifi-
cations of reality and the ability to develop useful decision models requires 
practice. This chapter outlines the various steps of decision modeling using 
decision trees. Other methods such as influence diagrams exist and have 
advantages, but decision trees are easier to understand and there is a one-
to-one linkage between the two approaches. To apply decision analysis, 
analysts and decision makers need to know the alternatives, the perform-
ance measures, the relevant sources of uncertainty in quantifying those 
performance measures, and the characteristics of those uncertainties. 

Choose the decision frame 

The first step in decision modeling is to choose the decision frame. This is 
done by identifying the alternatives and performance objectives. All of the 
potential alternatives exist in the decision space, an n-dimensional 
space defined over the decision variables, which are the set of discrete or 
continuous variables that make each alternative unique. Decision 
problems that have a large number of alternatives can be very difficult to 
solve; therefore, it is customary to sample a manageable set of alternatives 
from the decision space. There are at least two guidelines for selecting 
alternatives. First, a no-action alternative (maintenance of the status quo) 
should always be considered. Second, it is best to sample alternatives from 
all regions of the decision space. However, if it is known that a particular 
alternative or region of the decision space is not feasible, these alternatives 
can be explicitly excluded from further consideration. Such exclusions 
should be noted in documentation. 

There may be external factors that limit the region of the decision space 
from which a set of alternatives can be sampled. For example, when 
considering flood damage reduction alternatives, the decision maker may 
only have the authority to implement structural damage reduction 
measures such as levees, floodwalls, or gates. In that case, any 
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consideration of non-structural alternatives such as population relocation 
might be moot. In general, one might tend to consider a wide variety of 
alternatives at higher levels of the organization and a more narrow set of 
alternatives at lower levels. 

The decision maker must have a clear understanding of how the outcome 
of each alternative will be evaluated. While practitioners are often unclear 
about what performance measures should be used, there can be no lack of 
clarity about what performance measure will be used. The choice of a 
performance measure often reflects the values and priorities of the 
decision maker. Performance measures must be identical for each alterna-
tive and it is best to select performance measures early in the decision 
process. Performance measures can be refined and updated as the decision 
maker learns more about the decision problem, but this may require 
revisions to modeling efforts that support the decision-making process. 

The choice of performance objectives will affect the choice of models used 
to simulate decision outcomes. For the purpose of example, assume that a 
decision outcome can be evaluated in terms of a single monetizable 
attribute. 1

 

  Outcome performance must be forecasted over the life of the 
project with each alternative in place. The measure of outcome perform-
ance is the net present value (NPV) of the economic returns and costs over 
the life of the project. NPVj is the present value of the future stream of 
economic returns X with the jth alternative A in place minus the future 
stream of performance costs C aggregated and discounted over a planning 
horizon consisting of T intervals, t={1,2,...,T}: 
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Economic returns and costs are functions of models (g, h) that contain a 
vector of uncertain inputs that are random variables, Y and Z:  t t

X g Y  

and  t t
C h Z . Some inputs may be outputs of other models. Value 

parameters that may be incorporated into the various models, such as 
multiattribute weights and the discount rates, are not considered 

                                                                 
1 This report does not address the case of non-monetizable performance measures. 
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uncertain variables because it is assumed that the decision maker knows 
his or her preferences. 

Identify and screen sources of uncertainty 

Decision analysis enables the decision maker to address input and model 
uncertainties in forecasting economic returns and costs. The first task is to 
identify the important sources of input uncertainty in those calculations. 
This task should generally begin by considering the sensitivity of NPV to 
inputs of the decision model and, as sensitivities may warrant, working 
back to the inputs of any supporting models. Morgan and Henrion (1990) 
describe a useful measure of uncertainty importance η that is the product 
of the sensitivity of the model output (in this case NPV) and the standard 
deviation of an uncertainty distribution for the NPV model input, y: 

 
yy y

NPV
σ

∂
∂

=η
 (4) 

Calculation of η requires the analyst or the decision maker to describe 
uncertainty in the input variable of the decision model. Uncertainties 
should be characterized using probability distributions. These can be 
objective distributions based on data or, if data are scant, informed 
subjective assessments of uncertainty. An appropriate statistical distribu-
tion function is then chosen to represent uncertainty in the input (a dis-
cussion of available distributions and their parameterization is covered in 
statistical texts). When the inputs of the decision model are the outputs of 
supporting models, the uncertainty distribution in the input variable 
should be propagated from input uncertainties in the supporting models.  

Candidate uncertain variables are then ranked by the absolute value of 
uncertainty importance. Variables with the highest uncertainty import-
ance are selected for further analysis. This is often done by looking for 
order of magnitude differences in uncertainty importance and then 
excluding those variables with relatively low uncertainty importance. As a 
practical matter, it is important not to consider too many uncertainties. 
Decision problems become exponentially more difficult to analyze as the 
number of uncertainties increases. As a general rule, it is best to start with 
a short list, analyze the decision problem, and then if necessary expand the 
number of uncertain inputs as the analysis may warrant. 
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Construct a decision tree 

Decisions under uncertainty can be solved using a decision tree, which is 
illustrated in Figure 9. Figuratively, the decision tree consists of a tree-like 
sequence of nodes and branches leading to possible outcomes. Working 
from left to right in the figure, the first node in the tree is a decision node, 
which is customarily represented by a square. One branch emanates from 
the decision node for each of { }Jj ...,2,1=  alternatives. Each branch termi-

nates in a chance node, represented by a circle. In Figure 9, two decision 
alternatives (A1 and A2) and one chance node (Y) are replicated for each 
decision. The chance node represents a source of uncertainty in predicting 
decision outcomes. That source of uncertainty can be captured by either a 
quantitative or a qualitative variable.  
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A2

p(y1)

p(y2)

p(y3)

p(y1)

p(y2)

p(y3)

Y
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U(NPV | A1,y1)

U(NPV | A1,y2)

U(NPV | A1,y3)

U(NPV | A2,y1)

U(NPV | A2,y2)

U(NPV | A2,y3)

A1

A2

p(y1)

p(y2)

p(y3)

p(y1)

p(y2)

p(y3)

Y

Y

U(NPV | A1,y1)

U(NPV | A1,y2)

U(NPV | A1,y3)

U(NPV | A2,y1)

U(NPV | A2,y2)

U(NPV | A2,y3)  
Figure 9: A decision tree with two alternatives and 

one source of uncertainty that has been 
discretized into three possible states. Outcomes 
are expressed in terms of the utility of the NPV of 

the outcome. 

In Figure 9, the uncertain variable Y may take one of three discrete states, 
{ }321 ,, yyyY ∈ . If Y is a qualitative variable, a label is used to describe the 

state. If Y is a quantitative variable, a number is used to describe the state. 
If Y is a continuous quantitative variable, decision analysis forces the 
analyst to discretize that variable. For example, continuous uncertain 
variables such as population and employment growth rates, sedimentation 
rates, and rates of sea-level rise may be discretized into a mutually 
exclusive and collectively exhaustive set that describes - for the purpose of 
decision modeling - all of the possible “states of the world” with respect to 
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that variable. While the discussion and examples in this report emphasize 
discretization of uncertain variable distributions, it is also possible to 
obtain quasi-exact solutions using numerical simulation methods that 
sample many values directly from the continuous distributions underlying 
the discrete probabilities. This report emphasizes decision modeling using 
decision trees rather than simulation to help make the discussion more 
accessible, not because decision trees are better than simulation. Simula-
tion may tend to be preferred given access to modern software and 
computing tools. 

The three possible states in Figure 9 describe the range of conditions 
under which the outcome of the decision may be realized. Each possible 
state is associated with a probability p(yk) that reflects the decision 
maker’s beliefs regarding the conditions under which the outcome of the 
decision will be realized. The assignment of probabilities is discussed in 
the following section. If two or more uncertain variables are considered in 
a decision analysis, the probabilities of the states for one variable may be 
conditional on the state of the other variable, but the probabilities at each 
chance node must conform to the probability axioms. There can be any 
number of possible states, but a desire to keep the problem manageable 
often suggests that a limited number of possible states should be 
considered. What is manageable depends upon the sophistication of the 
computational tools with which one approaches the problem. 

Decision making under uncertainty implies that the decision maker knows 
something about his attitudes toward wealth and risk. Therefore, the out-
comes of the decision are expressed in the form of utility scores U(NPV). 
The expected utility of an alternative ( )[ ]kj yANPVUE ,|  is the expected 

utility of the NPV of the outcomes. This is calculated by converting the 
NPV of each decision outcome to a utility score and calculating a 
probability weighted sum of the utility scores for the alternative:  

 
( )[ ] ( ) ( )∑=

k
kjkkj yANPVUypyANPVUE ,|,|

 (5) 

A decision analysis is “solved” by identifying the alternative that maxi-
mizes the expected utility of the decision maker. Many applications of 
decision analysis neglect the utility calculation. This is synonymous with 
assuming that the decision maker is both risk neutral and wealth neutral. 
This may be a justifiable assumption if the stakes are small in relation to 
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wealth, but it should be an explicit assumption of the analysis. If the utility 
function is neglected, decision analysis only leads to a rational decision if 
the decision maker really is neutral with respect to wealth and risk. 

Probabilities for uncertain variable states 

Each branch emanating from a chance node represents a possible state of 
the world and must be associated with a probability. That probability 
represents the decision maker’s assessment that the conditions under 
which an outcome will be realized are accurately described by that state 
and not the other possible states. While these probabilities may be deter-
mined either subjectively or objectively, it is useful to consider in 
somewhat more detail the origin of these probabilities. The branches 
emanating from each chance node are propositions. In a properly 
formulated decision tree, the possible states are collectively exhaustive and 
mutually exclusive; therefore, exactly one of the possible states must be 
true. The probabilities in a decision tree represent the decision maker’s 
subjective assessment that the proposition Y = yk is true.  

The Bayesian underpinnings of subjective expected utility have already been 
discussed. Bayesian probabilities represent degrees of belief in a proposition 
rather than an objective frequency. Because probabilities represent the 
views of the decision maker, it is always possible to assign probabilities 
consistent with those views whether or not those views are based on 
objective information. If the decision model is properly structured, the 
decision maker maximizes subjective expected utility using those 
probabilities because they are consistent with his beliefs. Thus, decision 
makers can make decisions in the face of uncertainty using the subjective 
expected utility model given what they know, understand, or believe. This 
has great value, even in a science-based organization that relishes making 
decisions based on facts. As decision makers know too well, decisions must 
often be based on partial information, so-called facts may be imperfectly 
known, and stakeholders may be in disagreement about the facts.  

The foregoing discussion is not an argument for making decisions 
prematurely or in the absence of facts. The best decisions will be well-
informed by facts. Rather, the foregoing discussion implies that the 
decision making under uncertainty methods described here can be 
successfully applied to maximize subjective expected utility even when 
little information is available. Therefore, the methods can be scaled 
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appropriately for use in many situations, including those where there may 
be very limited information. 

What are the ways that a decision maker can assign probabilities to 
possible states?  The available options can be arrayed in terms of how 
much quantitative information the decision maker has available to form-
ulate his beliefs and how closely he aligns his beliefs with the quantitative 
information that is available. This concept is illustrated in Figure 10. The 
horizontal dimension indicates what type of information is available. The 
vertical dimension indicates how closely the decision maker aligns his 
beliefs with the available quantitative information. Within this array, there 
are a wide range of possible approaches. For expedience, this report 
emphasizes two extreme approaches. These extremes are the nominal 
assignment of probabilities and derived probability assignments.  
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beliefs aligned 
with quantitative 
information?

Qualitative Quantitative

What kind of information
is available?
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Closely

Nominal
probability

assignments
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B

 
Figure 10. Options for assigning probabilities to uncertain variable states. 

The nominal approach is simply to have a decision maker state his belief 
with regard to the probability that the proposition is true given what is 
known to him at the time. This approach emphasizes the subjective nature 
of decision analysis and can be used in situations where little quantitative 
information is available or the decision maker chooses not to rely on the 
quantitative information. This is also appropriate when the uncertain 
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variables are more qualitative. For example, in describing the weather, a 
decision maker may be more concerned with whether or not it rains 
tomorrow, in which case there are two possible states associated with the 
chance node (rain and no rain), but there are no underlying quantitative 
scales describing the amount, intensity, or duration of rainfall that might 
occur. The nominal approach is appropriate if the information available to 
the decision maker is mostly qualitative. Some decision makers may be 
reluctant to acknowledge the existence of any beliefs in the absence of 
quantitative information. However, the existence of these subjective 
probabilities can be proven by teasing them out through a series of 
laboratory experiments. Therefore, if decision makers are reluctant to 
assign nominal probabilities, a middle way may be to extract their beliefs 
through a series of experiments. For decision makers who may be oper-
ating outside their domain of expertise, it is also sometimes possible to 
obtain probabilities from experts. When relying on expert opinion, it is 
important to use formal structured techniques to elicit those probabilities.  

At the other extreme, it is possible to have mostly quantitative information 
available and to pay close attention to that information while 
de-emphasizing qualitative information that might be available. When there 
is sufficient information, probabilities for each state can be derived from 
probability distributions. For continuous variables, this is accomplished by 
breaking the variable’s range into intervals and obtaining a probability mass 
for each interval. An example is illustrated in Figure 11. For example, 
suppose that a continuous uncertain variable y is characterized by a density 
function fY(y) and the uncertain variable will be discretized to three possible 
states: “Low” with a nominal value of 5, “Medium” with a nominal value of 
15, and “High” with a nominal value of 25. The probability of each state can 
be calculated by constructing intervals centered on the chosen states of Y: 

)()()( MIN
kY

MAX
kYk yFyFyp −= , where dyyfyF YY ∫

∞

∞−
= )()( and the variables 

MIN
ky  and MAX

ky are the lower and upper bounds of the kth interval. The 

probability of being in each state in Figure 11(b) is equal to the area under 
the density function in 11(a). Discretization has advantages over nominal 
assignments of probability because it ensures a coherent probability 
structure, facilitates updating of probabilities for adaptive management 
decisions, and facilitates sensitivity analysis. 

It seems likely that most decision makers will operate somewhere on the 
diagonal of the array in Figure 10, between (Qualitative, Not closely) and 
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(Quantitative, Closely). Decision makers who operate in the areas labeled 
Fringe A and Fringe B may be ignoring available information. In the 
region of Fringe A, the decision maker has mostly qualitative information 
available to inform subjective probability assessments. In such cases, it 
would seem unreasonable to emphasize quantitative information. The 
opposite is true for the region denoted as Fringe B. If most of the inform-
ation that is available is quantitative, it seems that a decision maker 
should focus on that information rather than qualitative information. The 
point being made here is that decision makers will usually need to 
integrate quantitative and qualitative information when analyzing 
decisions under uncertainty.  

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Low (5) Medium (15) High (25)

Uncertain variable state (yk)

Pr
ob

ab
ili

ty
,  

p(
y k

) 

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 5 10 15 20 25 30
Uncertain variable (y)

D
en

si
ty

   
 .

Low Medium High

 
a)       (b) 

Figure 11. Density function for a continuous variable (a) is discretized to obtain the probability 
of being in one of three nominal states (b). 

Assess outcomes for each scenario and calculate their probabilities 

A scenario is a set of states for one or more uncertain variables. Scenarios 
describe the conditions for which the decision outcomes are evaluated. For 
a set of n uncertain variables, each with k states, there are kn scenarios, 
assuming all the possible combinations of variable states are feasible in 
reality. For example, a decision problem with two uncertain variables, Y 
and Z, each with three states, has 32 = 9 possible scenarios. These 
scenarios represent all possible states of the system in the decision model. 
In the real world many variables may be continuous or may naturally have 
many more levels than are represented in the model. Each scenario is 
associated with a probability of occurrence that is conditional on the state 
of other uncertain variables. A coherent set of scenarios is a set of 
scenarios that encompasses all possible states of the system such that 
every possible state in the real world can be associated with exactly one 
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scenario. The sum of probabilities for each of the scenarios must equal 
one. Outcomes are assessed for each scenario by evaluating the outcome of 
the decision under the conditions described in each feasible scenario. 

Characterize uncertainty in the outcome of each alternative 

It is often useful to plot the cumulative probability distribution function 
over the decision outcomes. Such plots are sometimes known as risk 
profiles because they show how the probability is distributed over the 
potential outcomes. The cumulative distribution for an outcome is con-
structed by ranking the consequences for an alternative in order of 
increasing consequence and calculating the cumulative probability of 
realizing each of the possible outcomes. The result can be plotted as a step 
function as illustrated in Figure 12. Figure 12(a) shows less uncertainty in 
the outcome of Alternative 2 (A2) than Alternative 1 (A1). In this example, 
A1 has a higher expected NPV, but a risk-averse decision maker might still 
prefer A2 if it has a higher expected utility than A1. Figure 12(b) illustrates 
a case where the NPV outcomes of A2 are always better than the NPV 
outcomes of A1. In this case, A2 exhibits stochastic dominance because the 
outcomes under this alternative are always better than under A1.  
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Figure 12. Examples of risk profiles for two hypothetical alternatives. 

Risk profiles should not be confused with risk curves introduced in 
Figure 2, but they are closely related to each other. Risk curves are 
loss-exceedance curves that give the probability of exceeding a potential 
loss; thus, they are only evaluated over adverse outcomes. In contrast, risk 
profiles are evaluated over all potential outcomes. Risk curves give the 
probability that losses exceed a specified amount. In contrast, risk profiles 
give the probability that an outcome is less than a specified amount.  
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Calculate utility scores and maximize expected utility 

The decision problem is solved by finding the optimal alternative. An 
alternative is optimal if it maximizes expected utility. Utility scores can be 
calculated for each outcome using the exponential utility function described 
in Chapter 3 (section titled “What is a utility function?”). The minimum 
utility score is 0, for the worst possible outcome, and 1 for the best possible 
outcome. A calculation of utility scores requires an assessment of the 
decision maker’s risk tolerance, which can be accomplished through a series 
of experiments. A discussion of these experiments is beyond the scope of 
this report. The value of the utility function is that it incorporates 
information about the decision maker’s preferences regarding risk and 
wealth. A ranking of the outcomes based on utility will be the same as a 
ranking based on the outcomes themselves, but the strength of preference 
for each outcome is adjusted based on the decision maker’s risk tolerance. 
The expected outcome and the expected utility are calculated by weighting 
the outcome or the utility scores by their probabilities and adding them up. 
At this point, it is important to point out that the expected utility is not the 
same as the utility of the expected outcome and decisions that are made by 
maximizing expected utility may differ from decisions that are made by 
maximizing expected outcomes. The two methods lead to the same decision 
if a decision maker is risk-neutral. 

Analyze sensitivity of the decision model 

The results of a decision analysis depend upon the parameter values and 
probability distributions that are used in modeling the decision. As with all 
models, it is useful to assess the sensitivity of modeling results. The object-
ive of a sensitivity analysis is to test the conclusions of the analysis and 
evaluate the importance of key parameters and assumptions in the decision 
model. The question driving the sensitivity analysis should be “Would 
changes in parameters or other assumptions in the decision model alter the 
potential outcomes of the alternatives or change the optimal decision?”  
Sensitivity analysis enables the analyst or decision maker to pick the 
problem up, examine it from a variety of perspectives, and play with it to 
challenge its conclusions. The process breeds familiarity with the decision 
problem and the decision model and builds confidence in the results of the 
analysis.  

Sensitivity analysis shows the decision maker what impact key assump-
tions in the decision model might have on the net present value and 
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utilities of each alternative and the optimality of each alternative. Sensi-
tivity analyses are developed by solving the decision model systematically 
varying probability and parameter assumptions. Parameter assumptions 
to consider might include the discount rate, risk tolerance parameter, 
weights on multi-attribute value functions, and variables that are consid-
ered uncertain, but have not been included as chance nodes. A decision 
model may contain many more relationships than can be effectively 
considered by a decision maker. In this case, the analyst should emphasize 
the pivotal relationships when presenting sensitivities to decision makers. 
The pivotal relationships are those that might change the decision. 

When conducting a sensitivity analysis, it is critical to understand the 
context in which the decision is being made. If the decision maker is an 
individual, the sensitivity analysis should focus on fixed variables and 
parameters in the decision model because value parameters and subjective 
probability assessments should be known to the decision maker. However, 
if the decision analysis is being prepared for a third party whose values 
and subjective probability assessments are not well known to the analyst, 
it is also useful to show the sensitivity of the decision to value parameters 
and parameters of subjective probability distributions. This lets the 
decision maker find the optimal alternative based on his own values or 
beliefs. A good sensitivity analysis makes information available and lets 
the decision maker retain control over the actual decision. 

In the context of a collaborative decision-making process, sensitivity 
analysis can be an important tool for resolving differences among stake-
holders and developing consensus. The sensitivity analysis should help 
stakeholders to understand how different points of view might lead to 
different courses of action. Therefore, an analysis of sensitivity with regard 
to value parameters and subjective probability assessments is appropriate. 
If differing points of view would not lead different decision makers to 
select different courses of action, then the differences can be set aside. This 
provides a way of focusing deliberation on the relevant issues and setting 
aside irrelevant differences.  

It can be easy for an analyst to become overwhelmed with the task of 
considering all possible sensitivities and to overwhelm the decision maker 
with confusing or irrelevant information. This should be avoided by 
focusing on only those relationships that, after careful consideration of the 
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assumptions and uncertainties in the context of the particular decision 
being made, are deemed most critical to the decision maker.  

The value of including uncertainty in the decision model 

In general, one should consider the uncertainty in a decision when the 
uncertain variables could affect the net benefits of a decision and there is a 
potential loss or opportunity cost associated with choosing an alternative 
that leads to a suboptimal outcome. However, there can be substantial 
costs associated with conducting a detailed probabilistic risk and decision 
analysis. Investments in a risk and decision analysis should be scaled to 
reflect the potential benefits of an analysis. The benefits of an analysis are 
the avoided losses that are expected from an analysis. The expected value 
of considering an uncertainty in a decision analysis is the difference 
between the expected outcome of the alternative one would choose consid-
ering that uncertainty and the expected outcome one would choose 
ignoring that uncertainty. The risk premium is an upper bound on 
including uncertainty in the decision process (Morgan and Henrion 1990). 
Because calculating the risk premium requires a probabilistic analysis, an 
estimate of the risk premium is often based on initial screening-level 
analyses undertaken using lower levels of resolution, “back of the enve-
lope” calculations, and available information. The value of including 
uncertainty in decision analyses is discussed by Morgan and Henrion 
(1990) and by Lund (2008). 

The value of perfect information 

Information that reduces uncertainty has value only if it would alter the 
decision maker’s decision about which alternative is preferred. If there are 
costs associated with obtaining information to reduce uncertainty, the 
optimal amount of information in a decision process is rarely perfect 
information. Perfect information means that there is no uncertainty with 
regard to the models or the quantities or assumptions used in the models. 
Sometimes it is useful to calculate the expected value of perfect inform-
ation (EVPI) as a way to assess whether or not investments to resolve 
those uncertainties are likely to pay off. If the expected costs of obtaining 
the information exceed the expected benefits of having that information, 
then one is better off making the decision despite the uncertainty.  

The expected value of perfect information (EVPI) about an uncertain input 
in a decision analysis is the difference in the expected outcome of a deci-
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sion that is made with perfect information and the expected outcome of 
the same decision made without that information. For a risk-neutral 
decision maker and a decision with a single uncertain variable, EVPI is 
calculated as follows:  
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All variables are as previously defined in this report. If there are multiple 
sources of uncertainty in a decision, say for example variables y and z, 
then a partial EVPI (EVPYI) - in this case for the uncertain variable y - can 
be calculated as follows: 
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  (7) 

Equation 7 can be extended to account for as many variables as necessary. 
If the decision maker is risk averse, then the NPVs must be converted to 
utilities. Value of information analyses are discussed in detail by Yokota 
and Thompson (2004(a) and (2004(b)).  

The EVPI statistic represents the maximum amount that a rational decision 
maker would be willing to pay to obtain perfect information before making 
the decision and depends upon the decision maker’s initial subjective 
assessment of uncertainty regarding the inputs in question. Value of 
information analyses have an important place in decision analyses because 
they can be used to prioritize information-gathering needs and establish 
boundaries on how much to invest in resolving uncertainty.  

It is rarely possible to obtain perfect information. Therefore, when priori-
tizing information-gathering needs using an EVPI calculation, one should 
consider the feasibility of obtaining perfect information. If perfect infor-
mation cannot be obtained, as will be the case for many inputs to a 
decision model, one can also calculate the expected value of sample 
information (EVSI), which is sometimes called the expected value of 
imperfect information (EVII). EVSI requires the decision maker to 
characterize the uncertainty in the information that is being valued before 
making the decision.  
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5 Adaptive Management and Anticipatory 
Engineering 

Adaptive management 

Decision analysis provides a framework for the systematic implementation 
of adaptive management. Adaptive management is the process of adjusting 
recurring decisions over time using evidence obtained by monitoring. 
Recurring decisions are those that are made periodically on a continuing 
basis. The implementation of adaptive management involves several steps. 
The first step is to develop and apply decision analysis as described in this 
chapter. A monitoring program is established to collect new evidence 
about uncertain quantities in the decision model. Bayes’ rule is then used 
to update the probabilities of the decision model in the next iteration of 
the decision. Bayes’ rule gives the posterior probability p(yk|e) which is the 
probability of uncertain variable y being in the kth state given new 
evidence e: 
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The first term in the numerator is the prior probability of y being in the kth 
state, p(yk). The second term in the numerator is the likelihood, which is 
the conditional probability of observing e given that y is in the kth state. 
The denominator is the total probability of observing e under the prior 
probability distribution.  

Framing one-shot decisions with potentially high costs as adaptive 
decision problems has the potential to mitigate the cost of “making the 
wrong decision,” (i.e., deciding one thing and then realizing that, in 
retrospect, after the future is revealed, we would have preferred to do the 
other thing after all.)  The cost of implementing adaptive management is 
likely to be higher than the cost of implementing a one-shot decision, but 
for contentious decisions where contention originates from alternative 
subjective probability assessments, adaptive approaches have the potential 
to reduce political barriers to moving forward. 
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Two forms of adaptive management are recognized in the literature: 
passive and active. Passive adaptive management is accomplished using 
information that is collected opportunistically, without the benefit of 
control groups, randomization, or replication. Active adaptive manage-
ment is accomplished using information that is collected through scientific 
experiments that are designed specifically for the purpose of adjusting the 
decision in an adaptive management process over time. While passive 
adaptive management is relatively inexpensive, the reliability of this 
approach has been questioned because of the lack of control over infor-
mation collection (Prato 2005). If adaptive management will be used in a 
decision process, it is a good idea to work out in advance specifically how 
information will be collected and used.  

Anticipatory engineering 

Some decisions are more amenable to adaptive management than others. As 
adaptive management is described above, a recurring decision is needed to 
implement the procedure so that one has the opportunity to update proba-
bilities based on new information. If a decision is non-recurring, there is no 
opportunity to update the decision. For example, one-time, irreversible, up-
front decisions regarding construction projects may be difficult to update. 
These types of decisions are sometimes known as one-shot investment 
decisions. Once the decision to build has been made and ground is broken, 
it is very difficult to alter the design of these structures based on new 
information. However, this does not mean that adaptive management 
principles do not have meaning for construction decisions. Efforts to 
capitalize on adaptive management principles for these types of decisions 
have led to the concept of adaptive or anticipatory engineering.  

Anticipatory engineering is the practice of building specific features into 
structures that enable managers to respond cost-effectively to changing 
infrastructure demands as the future unfolds. For example, sea-level rise 
may be expected to reduce the level of protection provided by a planned 
levee system. One possibility is for engineers to add additional levee height 
as a hedge against worst-case sea-level rise. Of course, the additional free-
board requires a significant up-front investment, the benefits of which 
may never be realized because the rates of sea-level rise are uncertain. If 
the worst case never occurs, the levee will have been over-built. This 
results in an opportunity loss because the money could have been spent to 
reduce flood risk elsewhere.  



ERDC TR-10-12 42 

 

The adaptive engineering solution to the hedging problem is to build in the 
capacity to raise levee crowns should future sea-level rise occur, but not to 
raise the levee crowns until the uncertainty in the future rate of sea-level 
rise is reduced or revealed. Anticipatory engineering requires creative 
thinking about how the demands on infrastructure may change in the 
future and what kinds of anticipatory features might be built into infra-
structure investments. However, the up-front costs of anticipatory 
engineering features must be justified by the discounted stream of future 
benefits, which is an expected cost savings.  

Decision analysis can be used as a framework for evaluating adaptive 
engineering alternatives. Doing so requires expanding the set of alterna-
tives to include both anticipatory and non-anticipatory designs and 
building the cost of “anticipatory” engineering features into the outcomes 
of alternatives. The outcomes of the decision analysis include the cost of 
building in the capacity to “upgrade” the infrastructure in the future, but 
not the cost of upgrading the structure should the conditions occur in the 
future. That is a separate decision to be made at a future time.  

The decision to upgrade the structure in the future is a recurring decision 
that is suitable for the implementation of adaptive management tech-
niques through which monitoring data are collected and the probabilities 
in the decision tree are updated each time the decision is reconsidered. For 
example, suppose that extra footprint has been purchased to facilitate 
future upgrades to a levee project and the project manager must 
re-evaluate the decision to upgrade the structure at five-year intervals. 
Monitoring data could be obtained during the five-year period leading up 
to reevaluation of the decision and used in conjunction with Bayes rule to 
update the probabilities over sea-level rise states in the decision model. 
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6 A Decision Analysis Example: Charter 
Fishing Boat Investment 

This example demonstrates how the decision modeling techniques 
described in Chapter 4 could be applied to solve a relatively simple 
investment decision. The decision model is used to characterize the risks 
associated with a charter fishing boat investment. The investment risks 
arise from uncertainty in the costs of operating a charter fishing boat and 
the market for charter fishing boat services. The decision tree provides a 
functional model of the decision and facilitates an exploration of the 
sensitivities to probability assessments and value parameters, providing 
additional insights into the decision problem. The expected value of 
perfect information is calculated for each of the uncertain variables in the 
decision model to determine which sources of uncertainty should be 
resolved first and how much should be invested in that information. This 
example is also used to demonstrate how a decision model can be used to 
implement adaptive management by updating the probabilities in the 
decision model with new information using Bayes rule and reevaluating 
the investment decision.  

The decision problem 

Rick Barton, who is recently retired, has the opportunity to pursue his life-
long dream of operating a charter fishing business on the Florida coast. 
Rick has located a used charter fishing boat that he can purchase for 
$52,500. He realizes that this is a risky investment with many uncertain-
ties, but he must reach a decision on whether or not to buy this boat by the 
end of the week. If he does not operate a charter fishing business, he will 
leave the money in an existing investment that is guaranteed to yield an 
8% annual return. Rick’s decision has been framed as a choice between a 
charter boat investment and an alternative investment. A natural 
performance measure for this decision is profit. If the profits from his 
charter boat investment would exceed the returns from the alternative 
investment, he will invest in the charter boat. 

Rick has acquired information on the operations of other charter fishing 
operations to assist him in making this decision. He develops a detailed 
cost and revenue model to estimate profit from operation of the fishing 
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boat. This model includes prices and amounts that are bound to fluctuate 
and cannot be known for certain (for example, fuel prices, fuel consump-
tion, annual insurance rates, the cost of fishing tackle and bait, onboard 
accommodations, and advertising). Following a thorough analysis of the 
uncertainties in his cost model, Rick identifies three variables that he 
believes are most important in terms of how uncertain their values are and 
how much impact they may have on profit. They are the vessel operating 
costs, the booking rate, and the percent capacity. The booking rate is the 
fraction of days during the fishing season that the vessel is chartered. 
Capacity utilization is the fraction of vessel capacity that is actually used.  

The decision model 

A decision tree can be formulated to model the decision problem, as shown 
in Figure 13. At the decision node, there are two alternatives: a charter boat 
investment and an alternative investment. With an annual interest rate of 
8%, the alternative investment leads to a certain outcome of $56,700 after 
one year. The outcome of the charter boat investment depends upon three 
uncertain variables, represented by chance nodes. Based on his analysis of 
other operations, Rick determines that his operating costs can vary widely, 
but will depend largely upon how hard it is to locate fish. In a good fishing 
year, the search time is low, resulting in lower fuel and maintenance costs. 
Operating costs can vary widely, but Rick determines that, for a good fishing 
year, a representative operating cost is $150/day and, for a bad fishing year, 
a representative operating cost is $225/day.  
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Figure 13. A decision tree for Rick Barton’s charter fishing boat decision. 
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The other two variables of interest are the booking rate and capacity 
utilization. If the booking rate is low, the boat will sit in port many days 
and Rick will incur moorage, insurance, and other maintenance costs. If 
the booking rate is high, these costs will be offset by revenue. Based on his 
review of other operations, booking rates can range from 0.2 to 1.0. Rick 
chooses the mid-point of two equal intervals over the range of possible 
values to use in his decision analysis, so his possible values are 0.4 and 
0.8. Capacity utilization is important because there is a per-person sur-
charge for fishing parties larger than two. The vessel has a capacity of eight 
fishermen, so the size of fishing parties will range from one to eight. Rick 
figures that, on the low end, average capacity utilization could be closer to 
50 percent and, on the high end, average capacity utilization could be 
around 75 percent. 

Probabilities are assigned to each possible state of the uncertain variables 
based on a review of other charter fishing boat operations. In Figure 13, 
probabilities appear in parentheses. Rick determines that good fishing years 
and bad fishing years occur at similar rates, so the probabilities of high and 
low operating costs are about the same (0.50). Oddly, the booking rate 
appears to be independent of whether or not it is a good fishing year or a 
bad fishing year. Rick analyzes his data and determines that booking rates 
are somewhat more likely to be on the lower end (0.52) than on the higher 
end (0.48). Capacity utilization varies with the booking rate. If booking 
rates are low, capacity utilization will also tend to be low and if booking 
rates are high, capacity utilization will tend to be high. Therefore, he calcu-
lates conditional probabilities for these chance nodes based on the booking 
rates. If booking rates are low, the probability of low capacity is 0.55 and the 
probability of high capacity is 0.45. If booking rates are high, the probability 
of low capacity is 0.36 and the probability of high capacity is 0.64.  

The monetary values at the terminus of each branch of the decision tree in 
Figure 13 are decision outcomes. For example, the outcome of the alterna-
tive investment is $56,700, which is the $52,500 that was not invested in 
the boat plus $4,200 interest. For the investment in the charter boat, 
decision outcomes are calculated by setting the uncertain variables in the 
detailed cost and revenue model (operating cost, booking rate, and percent 
capacity) to simulate a scenario. Eight scenarios are evaluated and the 
potential outcomes range from $42,775 to $85,175. Some outcomes are 
worse than the alternate investment, so there is a risk of an opportunity 
loss. Each scenario is associated with a probability as indicated in the 



ERDC TR-10-12 46 

 

column to the right. The probabilities for each scenario are calculated by 
multiplying the probabilities along each branch of the decision tree.  

The decision 

After careful study of other charter fishing boat operations and after an 
iterative process of model building, Rick is finally satisfied that his decision 
model provides a reasonable representation of the decision problem. 
However, he knows that he has more work to do before he can make a 
decision. Because his ability to recover from a financial loss during 
retirement will be limited, Rick understands that he is risk averse. Incorpo-
rating this information about his risk preferences into the decision analysis 
requires converting the potential outcomes into utility scores. However, 
Rick must first assess his risk tolerance. This he does with the help of a 
decision analyst friend. Based on Rick’s responses to a series of questions 
about his attitudes toward accepting risk, the decision analyst friend 
estimates Rick’s risk tolerance to be about 10,000. Armed with this estimate 
of his risk tolerance, Rick is able to convert his decision outcomes into 
utility scores, as shown in Figure 14. The utility scores are calculated using 
the exponential utility function as described in Chapter 3 of this report.  
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Figure 14. A decision tree showing utility scores for Rick Barton’s charter fishing boat 

decision. 

Rick calculates the expected utility of each decision alternative by 
weighting the utility scores by their probabilities and adding up them up 
for each alternative. The expected utility of the charter boat investment is 
0.715 and the expected utility of the alternate investment is 0.763. Given 
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Rick’s expressed preferences regarding risk, the best alternative for him is 
the alternate investment. A reevaluation of the charter boat investment 
decision might be warranted if economic conditions were to change. For 
example, a change in fuel prices or the price of the boat might warrant a 
reevaluation of the decision. Nevertheless, Rick feels somewhat disap-
pointed in the outcome of his analysis. The expected utilities are very close 
together and he isn’t really sure that he prefers the alternate investment. 
How can Rick be sure that he is really making the right decision by 
foregoing the charter boat investment opportunity?   

Sensitivity analysis 

Rick has been left feeling disappointed in the outcome of his decision. He 
consults his decision analyst friend who points out that discomfort with the 
results may signal shortcomings in the analysis. An obvious shortcoming in 
Rick’s analysis is that his performance measure neglects important aspects 
of the decision outcome. For example, the psychic benefits Rick might 
derive from operating the charter fishing boat have not been considered. 
Unfortunately, there is no time to revise Rick’s analysis by converting his 
performance measure to a multiattribute utility before the decision dead-
line. However, the friend also points out that Rick has not subjected the 
decision model to any kind of sensitivity analysis. Sensitivity analysis is an 
important step because it provides insights into the decision model and can 
reveal critical assumptions that may need to be revisited.  

In a sensitivity analysis, the outcomes of a decision are explored over a 
range of input values. To introduce sensitivity analysis, first consider how 
a risk-neutral decision maker might approach the charter boat decision. 
Figure 15 (a) illustrates a sensitivity analysis that explores how the 
expected net present value of the decision changes in response to assump-
tions about probabilities for two uncertain variables. The x-axis is the 
probability that the booking rate is low (Y= 0.4) and the y-axis is the net 
present value of the decision outcome. The dashed line shows the expected 
net present value of the decision outcome for the alternative investment 
(A2), E[NPV|A2] is constant at $56,700. The solid lines show the expected 
net present value of the decision for the charter boat investment (A1), 
E[NPV|A1]. If the solid line is below the dashed line, the alternative 
investment (A2) is preferred. If the solid line is above the dashed line, the 
charter boat (A1) is preferred. The three solid lines illustrate three 
realizations of the NPV function to further assess the sensitivity of the 
decision to operating cost assumptions. The nominal probability for the 



ERDC TR-10-12 48 

 

operating cost being high is p(Z = $225/day) = 0.5. If p(Z = $225/day) is 
reduced to 0.1, then the charter boat is always preferred. If 
p(Z = $225/day) is increased to 0.9, the charter boat is preferred if the 
probability that the booking rate is low, p(Y = 0.4), is less than 0.55.  
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Figure 15. Sensitivity analysis showing expected NPV for the charter boat alternative (A1) and 

the alternative investment (A2). 

A different view of the sensitivity analysis is offered by the contour plot in 
Figure 15 (b). The contour plot contains the same information as plot (a), 
but may be easier for some readers to interpret. The contour plot shows the 
difference in the expected net present value of the two alternatives for pairs 
of values along the x and y-axes. Each contour is labeled to show the differ-
ence in the expected value of purchasing the charter fishing boat or holding 
the existing investment. The contours are isoclines, along which the differ-
ence in expected values of the outcomes are constant. For example, along 
the contour labeled $10,000, the expected net present value of the charter 
fishing boat is $10,000 higher than the alternative investment. The expect-
ed outcomes of the two alternatives are identical along the break-even 
contour, labeled $0. Along the break-even contour, the decision maker is 
indifferent between the two alternatives. In Figure 15 (b), the x-axis is the 
probability that operating cost is high, p(Z=$225/day). The y-axis is the 
probability that the booking rate is low, p(Y=0.4). For probabilities above 
the break-even contour, the alternative investment A2 is preferred. For 
probabilities below the break-even contour, the charter fishing boat A1 is 
preferred. The advantage of using contour plots to evaluate the sensitivity of 
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the decision is that the decision maker can readily see how the outcome of 
the decision might change over the range of probabilities he might assess at 
each chance node.  

Sensitivity analysis of the expected monetary value is useful to a risk-neutral 
decision maker. For risk-averse decision makers like Rick Barton, outcome 
performance measures should be expressed in terms of utility scores and 
the decision should be made by maximizing utility. Likewise, the sensitivity 
analysis should examine the sensitivity of the utility scores. Figure 16 shows 
a contour plot sensitivity analysis for Rick Barton’s charter fishing boat 
decision. This analysis is based on a risk tolerance parameter of 10,000. The 
contours are labeled with the difference in the utility score between the two 
alternatives. The dot, located at p(Z=$225/day) = 0.5 and p(Y=0.4) = 0.52, 
is at the intersection of Rick Barton’s probability assessments for the oper-
ating cost state Z=$225/day and booking rate state Y = 0.4. The dot is above 
the isocline marked “0.0,” indicating that, for that probability assessment, 
the optimal alternative is the alternate investment. The intersection is above 
the break-even isocline, so the optimal alternative is A2.  
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Figure 16. Sensitivity analysis for Rick Barton’s 

charter fishing boat decision.  

Rick’s decision analyst friend points out that all of Rick’s probability 
assessments were made based on data that were collected from other 
charter fishing boat operations while the economy was in a recession. He 
suggests that Rick might want to reassess the probabilities in his decision 
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tree considering that the economy could improve. The region outlined by a 
dashed line suggests where the intersection of new probabilities for 
operating cost and booking rate states might lie if economic conditions 
improved. This sensitivity analysis suggests how easily new information 
might change the decision. Rick also realizes that decision analysis doesn’t 
tell the decision maker what to do, its real value to the decision maker is as 
an aide in learning about and understanding the decision problem. 

Sensitivity to risk preferences 

The key parameter in calculating a utility score is the risk tolerance para-
meter. While it is assumed that a decision maker knows his risk tolerance 
implicitly, it is often difficult to assess that value. In addition, when solving 
decision problems for third parties, it is often useful to evaluate the decision 
over a range of risk tolerances to illustrate how the decision depends upon 
the decision maker’s own preferences. This enables a decision maker to 
align himself with the risk tolerance that fits him the best and is also useful 
in cases where there may be multiple stakeholders. Figure 17 illustrates 
three sensitivity analyses for the charter boat decision considering three 
levels of risk tolerance. Figure 17 (a) shows results of the sensitivity analysis 
for a risk neutral decision maker (ρ = infinity). Figures 17 (b) and 17 (c) 
replicate the sensitivity analysis for risk-averse decision makers. Figure 17 
(b) assumes a risk tolerance of ρ = 20,000. Figure 17 (c) assumes a risk 
tolerance of ρ = 10,000, which is Rick Barton’s estimated risk tolerance.  

Figure 17 enables the decision maker to easily see how risk aversion might 
affect the decision. For ρ = 10,000, the alternate investment is preferred. 
The break-even isocline shifts upwards as risk tolerance increases. For 
example, if Rick’s risk tolerance was 20,000, then the optimal alternative 
would have been to buy the charter fishing boat. A sensitivity analysis for a 
risk tolerance of infinity is also shown to represent a risk neutral decision 
maker. Compare this with Figure 15(b) to confirm that the contours for 
differences in utility are the same for differences in expected monetary 
value if the decision maker is risk neutral. These figures enable the deci-
sion maker to find the optimal decision considering his individual beliefs 
about y and z and his level of risk aversion. Given his discomfort with the 
outcome of the decision, Rick may wish to reconsider his risk tolerance. 
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(a)          (b)     (c) 
Figure 17. Sensitivity analysis of Rick Barton’s charter boat decision considering three levels of 

risk aversion. The figure shows that decision makers who have different risk tolerances may 
choose different alternatives, even when the facts surrounding the decision are the same.  

Value of information 

Based on his decision analysis, Rick Barton has concluded that he should 
not buy the charter fishing boat. This decision was based on expectations 
about operating costs, the quality of fishing, and booking rates and capac-
ities, which were a function of the economic climate in the coming year. If 
the fishing is good, operating costs will be low and profits are likely to be 
high. If the economy is bad, the charter boat is likely to be booked at a 
lower rate and profits are likely to be low. Rick’s decision analyst friend 
points out that there may be value in reducing the amount of uncertainty 
faced in the charter fishing boat decision. He suggests value of information 
analysis as a way to gauge how much potential value new information 
might have. 

Rick decides to focus his value of information analysis on the booking rate 
and the percent capacity variables in his decision model because these 
variables are based on information that is readily obtainable. While Rick 
knows that no forecasts will ever be perfect, he calculates EVPYI to obtain 
an upper bound on what he should be willing to pay to obtain perfect 
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information on these uncertain variables. Applying the equation for EVPYI 
in Chapter 4, he calculates EVPYI for each of the uncertain variables. The 
operating cost has an EVPYI of $471. The booking rate has an EVPYI of 
$437. The percent capacity has an EVPYI of $270. Calculation of EVPYI 
enables one to rank the sources of uncertainties to determine which ones 
should be resolved first. Of the three uncertainties, operating cost has the 
highest value and booking rate has the second highest value. The amounts 
indicate the maximum that an investor should be willing to pay to fully 
resolve each of the sources of uncertainty in the decision model. However, 
perfect information is rarely available and imperfect information will be 
worth less than perfect information. If imperfect information can be 
obtained, it is also possible to assess the value of imperfect information; 
however, this requires information about the uncertainty in that 
information.  

Adaptive management 

Rick Barton finds an economist who has developed a method to predict 
charter fishing boat booking rates using economic indicators. A review of 
this economist’s record shows that his economic forecasts accurately 
predict booking rates about 70 percent of the time. When he predicts 
booking rates will be low, booking rates turn out to be low 80 percent of 
the time. When he predicts that booking rates will be high, booking rates 
turn out to be high 60 percent of the time. This information is outlined in 
Figure 18. The economist informs Rick that his forecast for the upcoming 
year is that booking rates will be high. It is still not too late to purchase the 
charter boat. Rick Barton summarizes the information that he has and 
quickly updates the probabilities in his decision tree to reflect this new 
information, which will enable him to reevaluate his decision. 

TRUE BOOKING 
RATE STATE ECONOMIST’S 

PREDICTION 
Low High 

Low 0.8 0.4 
High 0.2 0.6 

   
Figure 18. Information on the economist’s 

performance with respect to forecasting charter 
boat booking rates. 
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The performance information provided by the economist cannot by itself 
be used to update the probabilities because it does not contain information 
on the base rates. The new information provided by the economist is the 
forecast of high booking rates. This information can be used to update the 
booking rate probabilities in Rick Barton’s decision tree. The initial 
probabilities for booking rate states in the decision tree are the prior 
probabilities p(yk). These are the base rates of occurrence for low and high 
booking rate years. The new information (or evidence) is the economist’s 
prediction for the upcoming year.  

The probability of observing the booking rate state given the evidence, 
p(yk|e), is calculated using Bayes rule. Figure 18 gives the likelihood, 
which is the conditional probability of observing the evidence (e) given 
that y is in the kth state, p(e|yk). Given the economist forecasts a high 
booking rate, the posterior probabilities are calculated as follows: 

 
 

 
. .

Low |Forecast "High" . , and
. . . .kp y


   

  

0 2 0 52
0 265

0 2 0 52 0 6 0 48
 

 
 

 
. .

High|Forecast "High" .
. . . .kp y


   

  

0 6 0 48
0 735

0 2 0 52 0 6 0 48
 

Were the economist to have forecasted a low booking rate, the posterior 
probabilities would have been calculated as follows:   

 
 

 
. .

Low |Forecast "Low" . , and
. . . .kp y


   

  

0 8 0 52
0 684

0 8 0 52 0 4 0 48
 

 
 

 
. .

High|Forecast "Low" .
. . . .kp y


   

  

0 4 0 48
0 316

0 8 0 52 0 4 0 48
 

Rick Barton updates his decision by substituting the posterior proba-
bilities for his prior probabilities at the booking rate chance node. These 
probabilities are conditioned on the information obtained from the 
economist in the form of a booking rate forecast. Re-solving the decision 
tree, he finds that his utility is now maximized by the charter boat 
investment.  
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In this example, Rick Barton has applied the passive approach to adaptive 
management because the new information he uses to update his decision 
is not obtained through a structured experiment. Although the infor-
mation is not obtained as part of the decision-making process, the 
forecasts he uses to update the decision tree are qualified by information 
on the past performance of the forecaster.  
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7 A Decision Analysis Example: The Town 
Harbor Dredging Decision 

This example demonstrates the application of decision making under 
uncertainty to a dredging decision that is representative of one that might 
be encountered at a USACE district. The example demonstrates how this 
decision might be framed, how uncertainties might be characterized, and 
how the decision tree would be structured. The example illustrates how 
sensitivity analysis can be used to evaluate the robustness of the decision 
and learn how changes in modeling assumptions might alter the decision. 
Sensitivity analysis can be used to build confidence in the results of an 
analysis. For example, this can be done by revealing potential opportunity 
costs.  

The decision problem 

The USACE District Office maintains navigation channels to support 
waterborne transportation into and out of Town Harbor. The navigation 
route leading to Town Harbor consists of two reaches, as shown in 
Figure 19. Characteristics of the Lower and Upper Reaches are described 
in Table 1. The Lower Reach is 3 miles long, 600 ft wide, and has an 
authorized depth of 40 ft. The Upper Reach is 2 miles long, 500 ft wide, 
and has an authorized depth of 37 ft. Approximately 40 percent of the 
cargo transported in and out of Town Harbor is off-loaded or on-loaded in 
the Lower Reach. The remainder of the cargo must pass through the Upper 
Reach.  

In previous years, the channels have been maintained at depths that are 
less than the authorized depths because of budget limitations. The Lower 
Reach has been maintained at a depth of 36 ft and the Upper Reach has 
been maintained at a depth of 33 ft. Surveys show the Lower Reach 
presently has a depth of 30 ft and the Upper Reach presently has a depth 
of 29 ft. For the upcoming dredging cycle, the operations manager has 
been asked to provide an economic justification for his choice of dredging 
alternative.  
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Figure 19. Map of Town Harbor showing Lower Reach 

and Upper Reach navigation channels. 

Table 1. Navigation channel characteristics. 

Characteristic Lower Reach Upper Reach 
Channel length (miles) 3.0 2.0 
Channel width (feet) 600 500 
Authorized depth (feet) 40 37 
Percent of tonnage 0.4 0.6 
Survey depth (feet) 30 29 
Unit cost of dredging (yard-3)  $9.18 $18.36  

A dredging alternative is economically justified if the incremental cost of 
shipping is greater than the cost of dredging. The cost of shipping is 
defined as the cost per ton to transport cargo in and out of Town Harbor 
plus the maintenance dredging cost per ton of cargo transported. Shipping 
costs increase as the channel depth decreases because vessels that require 
deeper drafts must "adapt," meaning that the vessel must enter the harbor 
light-loaded, without using its full design draft, or anchor outside the port 
and lighter the cargo into port on barges. Both of these approaches raise 
the cost of shipping per ton of cargo.  

The decision frame 

The operations manager frames the decision by determining decision 
objectives and choosing project alternatives. The decision objective is to 
maximize the expected utility of the maintenance dredging program: 
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( )[ ]jj
NPVUEM AX

 (9) 

The function U is the utility function and NPVj is the net present value of 
alternative j. MAX is an operator that means find alternative j that maxi-
mizes the utility function. For a risk-neutral decision maker, this objective 
is synonymous with minimizing the net present value of shipping and 
maintenance dredging costs per ton of cargo shipped in and out of Town 
Harbor during the dredging cycle. The net present value (NPV) of the jth 
dredging alternative is the sum of shipping cost per ton during the mainte-
nance period plus the maintenance cost per ton associated with the 
dredging alternative: 
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The average shipping cost per ton in Town Harbor is the sum of shipping 
cost per ton to the kth reach kF  weighted by the proportion of tonnage 

destined for that reach αk. The maintenance cost per ton is the total cost of 
the dredging alternative divided by the total tonnage transported in and out 
of Town Harbor. If dredging cycles span multiple years T, cost savings must 
be estimated for each year, discounted, and aggregated for the dredging 
cycle. For single period decisions in which all dredging costs are incurred in 
the same year that shipping cost savings are realized, discounting and 
aggregation of cost savings over multiple time periods can be neglected.  

The operations manager uses shipping cost functions to estimate the 
average shipping cost per ton of cargo shipped in and out of Town Harbor. 
The shipping cost per ton in each reach is expressed as a function of the 
limiting depth in that reach:  

 ( ) ( )kkjkjkj SDgLgF −==  (11) 

The cost of shipping is a function of the limiting depth Lkj, which is the 
difference between the dredge-to-depth Dkj and shoaling Sk during the 
maintenance period. Shoaling is the process by which sediment accumu-
lates in the navigation channel, reducing the vessel drafts that can be 
accommodated in the channel. As the depth in the navigation channel 
decreases, the cost of shipping per ton of cargo delivered to Town Harbor 
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increases because the channel cannot accommodate vessels with deeper 
drafts, limiting the amount of cargo that can be loaded on each vessel. The 
shipping cost per ton is shown as a function of limiting depth in Figure 20. 
In this example, shipping cost per ton is expressed as a function of limiting 
depth because the decision variable is the dredge-to-depth. However, 
vessel size and the type of cargo being transported can be important 
factors in determining vessel operating costs and average shipping cost per 
ton. In this example, it is assumed that the fleet transporting cargo into 
and out of Town Harbor is uniform, as is the cargo.  
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Figure 20. Shipping costs per ton as a function of limiting depth 

in the Upper Reach and the Lower Reach. 

The maintenance dredging cost per ton of cargo shipped in and out of 
Town Harbor is the total cost of the dredging alternative divided by the 
market demand M. The cost of a dredging alternative is a function of the 
dredge-to-depth in each reach and the volume of material that must be 
dredged. The unit cost of dredging is determined by the type of material 
being dredged, the distance that must be traveled to disposal sites, and 
environmental protection constraints on dredging operations. Reliable 
estimates of unit dredging costs are available because all of these factors 
are known from surveys and dredging plans. Market demand, which is 
independent of dredging activities at Town Harbor, is used to calculate the 
average cost of maintenance dredging activities per ton of cargo shipped to 
and from Town Harbor. Market demand is uncertain and depends upon 
global economic factors.  
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Dredging alternatives are selected by the operations manager to represent 
a reasonably diverse set of possibilities from feasible regions of the deci-
sion space. Four feasible alternatives are identified for Town Harbor. 
These alternatives are outlined in Table 2. The operations manager is 
required to consider a no-action alternative (Alternative A0) that would 
involve foregoing any dredging in both the lower and the upper reaches. 
The lower reach-only alternative (Alternative A1) would emphasize 
dredging in the lower reach because the unit cost of dredging is lower than 
in the upper reach. The enhanced compromise plan (Alternative A2) would 
dredge the lower reach to 38 ft and the upper reach to its authorized depth 
of 37 ft. The operations manager also considers a status quo plan 
(Alternative A3) that would continue the past practice of dredging to 36 ft 
in the Lower Reach and to 33 ft in the upper reach.  

Table 2. Town Harbor dredging alternatives. 

Alternative Description 

Dredge-to-Depth (feet) 
Cost of 
Alternative 

Lower 
Reach 

Upper 
Reach 

A0 No Action: Do not dredge navigation channels or 
perform maintenance at placement sites. 30 29 $0 

A1 
Lower Reach Only: Dredge the lower reach to its 
authorized depth and forego dredging and 
maintenance in the upper reach. 

40 29 $32,313,600 

A2 
Enhanced Compromise:  Dredge the lower reach 
to 38 ft and the Upper Reach to its authorized 
depth, 37 ft. 

38 37 $54,574,080 

A3 Status Quo:  Dredge the lower reach to 36 ft and 
dredge the upper reach to 33 ft. 36 33 $33,749,760 

Sources of uncertainty 

There are many sources of uncertainty in estimating the net benefits of 
each alternative. Shoaling levels in each reach vary from year to year as a 
function of local hydraulic conditions including precipitation, tides, 
currents, and the frequency and severity of storms. Shoaling during the 
upcoming dredging cycle is estimated using numerical models that 
account for these variables. The tonnage of imports to and exports from 
Town Harbor are predicted from historical records, but estimates are 
subject to uncertainty in global economic conditions and markets. The 
operations manager asks his staff to analyze uncertainty in those 
determinants of shipping cost savings that he regards as most likely to 
influence the decision: the shoaling rate in the upper reach (SU), the 
shoaling rate in the lower reach (SL), and market demand (M). Results of 
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the analysis are shown in Figure 21. The analysis shows that shoaling rates 
follow a lognormal distribution while market demand can be described by 
a normal distribution. The parameters for these distributions are shown in 
Table 3. The variables, which are continuous, are discretized for decision 
analysis. The operations manager selects the nominal values shown in 
Table 3 as midpoints of a discrete set of intervals that represent a set of 
possible events. The probability distributions are discretized to obtain the 
event probabilities shown in Table 4.  
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Figure 21. Uncertainty in key inputs to the net benefit function used to evaluate the 

performance of decision alternatives. 

Table 3. Parameters and nominal values for uncertain variables considered in the decision. 

Uncertain variable Symbol 

Parameters Nominal values 

Mean 
(µ) 

Standard  
deviation  
(σ) Low Medium High 

Shoaling, Upper reach 
(ft/cycle) SU 4 4.8 2.5 5.0 7.5 

Shoaling, Lower reach 
(ft/cycle) SL 6 1.6 2.0 4.0 6.0 

Market demand (million 
tons/cycle) M 10 2 5 10 15 

 

Table 4. Event probabilities obtained by discretizing the probability distributions in Figure 14. 

Shoaling in the Lower Reach (SL) Shoaling in the Upper Reach (SU) Market Demand (M) 
Midpoint (ft) Probability Midpoint (ft) Probability Midpoint ($) Probability 
2.5 0.3952 2 0.2901 5,000,000  0.1056 
5 0.2978 4 0.4907 10,000,000  0.7887 
7.5 0.3070 6 0.2192 15,000,000  0.1056 
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The decision model 

The decision is modeled using a decision tree as shown in Figure 22. The 
figure shows four branches leading from the decision node, one for each 
alternative (A0, A1, A2, and A3). The decision tree expands for each alterna-
tive as shown by the branches emanating from Aj in the right-hand side of 
the figure. There are three chance nodes in the decision tree, one for each 
uncertain variable in the analysis. The probabilities at each chance node 
are based on a discretization of the continuous probability distributions 
for each uncertain variable. In this representation of the decision problem, 
each alternative leads to 27 possible outcomes. The decision outcomes are 
the net present value of shipping and maintenance dredging costs per ton 
of cargo shipped in and out of Town Harbor during the dredging cycle 
evaluated at the nominal values of the uncertain variables leading to that 
outcome. The expected NPV of each alternative, E[NPVj | Aj, pi, yi], is the 
probability weighted sum of the 27 potential outcomes for that alternative. 
The decision rule is to choose the alternative that minimizes the expected 
outcome. 
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Figure 22. A decision tree for the Town Harbor dredging decision. The figure 

shows four dredging alternatives (A0, A1, A2, and A3) emanating from the 
decision node. There are 27 possible outcomes for each alternative. 
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Risk profiles 

A risk profile is a cumulative probability distribution over all of the 
possible outcomes of an alternative. Its purpose is to characterize the 
uncertainty in the outcome of an alternative. Risk profiles for the Town 
Harbor dredging decision are illustrated in Figure 23. For each alternative, 
there are 27 possible realizations of the outcome, as illustrated by the 
decision tree in Figure 22. The risk profile in Figure 23 shows that, with all 
of the fixed parameters of the analysis at their nominal levels, the out-
comes of the four dredging alternatives range from about $7.50 to about 
$20 per ton. The risk profile gives the probability that the shipping cost 
per ton is less than the corresponding amount on the x-axis. For example, 
under the enhanced compromise alternative (A2), there is a 50% chance 
that the shipping cost per ton is less than $9.55 and a 90-percent confi-
dence interval on shipping cost per ton would be $7.63 to $15.01. The 
status quo alternative (A3) yields an outcome that is similar to A2, but 
shipping costs per ton are likely to be slightly higher. In contrast, the lower 
reach-only alternative (A1) performs much less well than the enhanced 
compromise alternative (A2). The lower reach-only alternative leads to a 
50-percent chance that the shipping cost per ton would exceed $13.33 and 
a 90-percent confidence interval on shipping costs that ranges from $10.57 
to 16.86. Even the no-action alternative (A0) performs better than the 
lower reach-only alternative.  
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Figure 23. Risk profiles illustrate uncertainty in the net present 

value of potential outcomes for each alternative. 
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If a decision maker is risk neutral, the outcomes of a decision can be 
expressed in monetary or physical terms. However, if decision makers are 
risk averse, results should be expressed in terms of utility. A risk-averse 
decision maker places more emphasis on avoiding potential losses than 
achieving potential gains. The decision objective is to maximize expected 
utility (synonymous with minimizing the cost of shipping). In the Town 
Harbor dredging example, risk aversion translates into placing a higher 
value on reducing high shipping costs than on reducing low shipping costs. 
Risk aversion is modeled using a risk tolerance parameter ρ. Recall that 
the risk tolerance parameter is the maximum amount of a potential payout 
that would induce a decision maker to enter a lottery with a 50% chance of 
paying the entrant x and a 50% chance of costing the entrant x/2.  

Maximizing utility rather than expected value will often lead a decision 
maker to a different set of conclusions. Figure 24 shows the risk profiles 
for the Town Harbor dredging decision in terms of utility. Results are 
displayed for a risk-neutral decision maker in (a), approximated by a risk 
tolerance parameter of ρ = 1.0x107. Results are displayed for a risk-averse 
decision maker in (b), with a risk tolerance of ρ = 5.00. In this case, risk 
aversion appears to have little effect on the decision. A2 and A3 lead to 
similar outcomes and A1 is still dominated by A0.  

The expected utility of each alternative E[U(NPVj | Aj, yi)] is the 
probability-weighted sum of the utility of monetary outcomes for that 
alternative. If the decision maker is risk neutral, maximizing utility is 
synonymous with minimizing expected shipping cost. Table 5 shows the 
expected net present value and utility scores for each alternative in the 
Town Harbor maintenance dredging example. A risk-neutral decision 
maker would choose A2, the enhanced compromise alternative, because 
this alternative maximizes expected utility. A risk-averse decision maker 
characterized by a risk tolerance of 5.00 would also choose A1.  

The sensitivity analysis 

The results of a decision analysis depend upon the parameter values and 
probability distributions that are used in modeling the decision. As with all 
models, it is useful to assess the sensitivity of modeling results both as a 
means to validate the results by ensuring that the results make sense and 
to inform the decision maker about key sensitivities in the decision. 
Sensitivity analyses should build confidence in an analysis supporting a 
decision or should reveal what aspects of an analysis might need  
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Figure 24. Risk profiles showing uncertainty in the utility of outcomes for a risk-neutral 
decision maker with risk tolerance of infinity (approximated by 1.0x107) (a) and a risk-averse 
decision maker with a low risk tolerance of 5.00 (b). Utility functions for each decision maker 

are displayed in the panels below the risk profiles. 

 

Table 5. Expected NPV and expected utility for maintenance dredging alternatives. 

Decision criteria 

Risk 
tolerance 
parameter 

Risk 
attitude Units 

Alternative 

A0 A1 A2 A3 
E[NPV | Aj , yi] - - ($/ton) 12.67 13.87 10.19 10.57 
E[U(NPV | Aj, yi)] 1.0x107 Risk neutral Utils 0.573 0.485 0.757 0.729 
E[U(NPV | Aj, yi)] 5.00 Risk averse Utils 0.822 0.749 0.919 0.914 
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additional work. Sensitivity analyses are conducted by varying the 
parameters of the decision model and evaluating the net present value and 
utility of decision alternatives while holding all other parameters in the 
decision model constant. Results of the sensitivity analysis are displayed in 
the form of figures that show which alternatives are optimal for different 
combinations of parameter values. While the figures in this example are 
best viewed in color, they are designed so that they can also be read in 
black and white. 

Several examples of sensitivity analyses are considered to demonstrate 
sensitivity analysis in different types of decision environments. This 
example considers sensitivity analysis for the single decision maker and 
sensitivity analysis for the collaborative decision maker. There are subtle 
differences in the approach. As a practical matter, a single decision maker 
should conduct sensitivity analysis only on the fixed variables and 
parameters used in the decision model. There is no reason to conduct 
sensitivity analysis on value parameters or probabilities because the 
decision maker knows his values and preferences and subjective proba-
bilities are not uncertain. In contrast, a collaborative decision maker may 
be interested in conducting sensitivity analysis of value parameters and 
probabilities as a way of considering how the results might change, given 
different points of view of stakeholders involved in the decision process. 

Sensitivity analysis for a single decision maker 

For decisions involving a single stakeholder, the sensitivity analyses might 
be driven by concern over what nominal values have been used for fixed 
variables and parameters in the decision model. The question to be 
addressed is whether or not the optimal alternative changes over the range 
of plausible values. These analyses also help decision makers to develop an 
understanding of how their strategies might change in the event of 
changes in uncontrollable variables. This example considers sensitivity to 
two fixed variables, the unit cost of dredging in the upper reach and the 
unit cost of dredging in the lower reach. The unit cost of dredging is 
determined by the type of material being dredged, the distance that must 
be traveled to disposal sites, environmental protection constraints on 
dredging operations, and fuel prices. While there may be some correlation 
between these two variables, it is also possible that one has been over-
estimated and the other has been under-estimated. Therefore, the 
variables are treated independently.  
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Sensitivity of the dredging decision to the unit cost of dredging in each 
reach is presented in Figure 25. The horizontal axis of the table shows a 
range of possible unit dredging costs in the lower reach. The vertical axis 
shows a range of possible unit dredging costs in the upper reach. Each cell 
of the table indicates the decision alternative that would be optimal under 
some combination of unit dredging costs in each reach. This figure helps 
to validate the decision model because it shows that alternatives that 
require more dredging activity are only optimal when unit dredging costs 
are low. As unit dredging costs increase, the no-action alternative (A0) 
becomes optimal. Showing results like this should help to build confidence 
in the decision model.  

Results in Figure 25(a) are for a risk-neutral decision maker. The nominal 
unit dredging costs in Town Harbor are $9.18 yd-3 in the lower reach and 
$18.36 yd-3 in the upper reach. While these costs are treated as fixed 
variables in the decision model, they may not be devoid of uncertainty. In 
addition, these costs can change over time depending upon factors beyond 
the control of the decision maker; therefore, it is useful to have insight into 
how such changes might alter the decision. These results show that the 
decision has a high degree of sensitivity to the nominal unit costs assumed 
in this analysis. The preferred alternative for the nominal costs is the 
enhanced compromise alternative (A2). However, a relatively minor 
increase in the unit cost of dredging might make the status quo alternative 
(A3) more preferable.  

In Figure 25(b), the sensitivity to unit dredging costs is shown for a risk-
averse decision maker to show how the set of optimal decisions might be 
affected by risk attitudes. In this case, a risk tolerance parameter of ρ = 5.0 
is used to simulate risk aversion. There are some differences between 
figures 25(a) and 25(b). For example, the optimal alternative at the inter-
section of $20.00/yd3 for the lower reach and $10.00/yd3 for the upper 
reach switches from A2 for the risk-neutral decision maker to A3 for the 
risk averse decision maker. Despite a few differences like these, the 
comparison of Figures 25(a) and 25(b) reveals that, at least with respect to 
these variables, this decision has rather limited sensitivity to the decision 
maker’s risk attitudes.  



ERDC TR-10-12 67 

 

Dredging Cost - Lower Reach ($/yd3)
0.00 2.50 5.00 7.50 10.00 12.50 15.00 17.50 20.00 22.50 25.00

0.00 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2
5.00 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A0

10.00 A2 A2 A2 A2 A2 A2 A2 A2 A2 A0 A0
15.00 A2 A2 A2 A2 A2 A2 A2 A2 A0 A0 A0
20.00 A2 A2 A2 A2 A2 A3 A3 A3 A0 A0 A0
25.00 A2 A2 A2 A3 A3 A3 A3 A0 A0 A0 A0
30.00 A2 A3 A3 A3 A3 A3 A0 A0 A0 A0 A0
35.00 A3 A3 A3 A3 A3 A0 A0 A0 A0 A0 A0
40.00 A3 A3 A3 A3 A3 A0 A0 A0 A0 A0 A0
45.00 A1 A3 A3 A3 A0 A0 A0 A0 A0 A0 A0
50.00 A1 A1 A3 A0 A0 A0 A0 A0 A0 A0 A0

D
re

dg
in

g 
C

os
t -

 
U

pp
er

 R
ea

ch
 ($

/y
d3 )

 
(a) Sensitivity analysis for a risk-neutral decision maker, ρ = 1.0x107 
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(b) Sensitivity analysis for a risk-averse decision maker, ρ = 5.00 

Figure 25. Sensitivity of the decision to unit dredging costs in the Lower and Upper Reaches. 
Sensitivity is evaluated for a risk-neutral decision maker (a) and a risk-averse decision 

maker (b).  

Sensitivity analysis for collaborative decision makers 

In collaborative decision-making processes, sensitivity analyses can be 
used as a way of confronting stakeholder differences and achieving 
consensus around common courses of action. In this context, it makes 
sense to consider differences among stakeholders with respect to 
assumptions about fixed variables in the analysis, subjective probability 
assessments, and risk attitudes. The question to be addressed is whether 
or not different assumptions with regard to these aspects of the decision 
model would lead different decision makers to select different courses of 
action. If not, concerns or differences of opinion may be overcome, leading 
to consensus for a common alternative. If so, this provides a way of 
focusing deliberation on the relevant issues. These types of sensitivity 
analyses can also be useful when analysts are presenting results to third-
party decision makers. 

It is not at all unreasonable to expect that different stakeholders might 
have different levels of risk aversion. Therefore, the risk tolerance 
parameter in this example is a key variable of interest. Another key 
variable is the expected market demand, which is a fixed parameter of the 
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distribution characterizing uncertainty in the market demand variable. 
Figure 26 shows a sensitivity analysis for these two variables. As in 
Figure 25, each cell indicates which alternative is preferred given the 
combination of risk tolerance parameter and expected market demand 
assumed in the analysis. The figure shows that, at the nominal value of 
market demand (10 million tons), the decision is relatively insensitive to 
differences in risk attitudes, particularly at levels of risk tolerance greater 
than ρ = 4.0. For decision makers who are highly risk averse (ρ < 5.0), the 
decision shows some sensitivity to risk tolerance.  

Risk Tolerance Parameter, ρ
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 1.0x107

5.0 A3 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0
5.5 A3 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0
6.0 A3 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0
6.5 A3 A3 A0 A0 A0 A0 A0 A0 A0 A0 A0
7.0 A3 A3 A3 A3 A3 A3 A3 A3 A3 A3 A3
7.5 A3 A3 A3 A3 A3 A3 A3 A3 A3 A3 A3
8.0 A3 A3 A3 A3 A3 A3 A3 A3 A3 A3 A3
8.5 A3 A3 A3 A3 A3 A3 A3 A3 A3 A3 A3
9.0 A3 A3 A3 A3 A3 A3 A3 A3 A3 A3 A2
9.5 A3 A3 A3 A3 A2 A2 A2 A2 A2 A2 A2

10.0 A3 A3 A3 A2 A2 A2 A2 A2 A2 A2 A2
10.5 A3 A3 A2 A2 A2 A2 A2 A2 A2 A2 A2
11.0 A3 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2
11.5 A3 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2
12.0 A3 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2
12.5 A3 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2
13.0 A3 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2
13.5 A3 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2
14.0 A3 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2
14.5 A3 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2
15.0 A3 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2
15.5 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2
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Figure 26. Sensitivity of the dredging decision to risk tolerance and expected market tonnage. 

Figure 26 also shows that differences in beliefs about expected market 
demand can have an effect on which alternative is optimal. At higher levels 
of risk tolerance, the no-action alternative (A0) tends to be preferred when 
expected market demand is low (below 6.5 million tons). The status quo 
alternative (A3) tends to be preferred if expected market demand is 
between 7.0 and 9.5 million tons. The enhanced compromise alternative 
(A2) is preferred when expected market tonnage is greater than 9.5 million 
metric tons. These conclusions show sensitivity to risk attitudes. As risk 
tolerance decreases (ρ < 5.0), the status quo alternative (A3) is optimal 
over an increasingly large range of expected market demand. This analysis 
lets stakeholders who have differing expectations about market demand 
and different attitudes toward risk assess whether these differences would 
lead to different courses of action.  

The fraction of tonnage headed to and from the upper reach is an impor-
tant fixed variable in the decision model because the high cost of dredging 
in the upper reach can only be justified if a sufficient tonnage will pass 
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through the Upper Reach. The nominal fraction of tonnage headed to the 
Upper Reach is 0.6. Figure 27 shows the sensitivity of the dredging 
decision to this variable and the risk tolerance parameter. When the 
fraction of tonnage headed to the upper reach is less than or equal to about 
0.2, the lower reach-only alternative (A1) is preferred. This result is consis-
tent for all levels of risk tolerance. If the fraction of tonnage bound to or 
from the Upper Reach is greater than 0.2, either the enhanced compro-
mise alternative (A3) is preferred or the lower reach-only alternative 
(A2) is preferred. The optimal alternative switches from A3 to A2 as the 
fraction increases. At higher levels of risk aversion (ρ < 5.0), the decision 
shows greater sensitivity to the risk tolerance parameter.  

Risk Tolerance Parameter, ρ
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 1.0x107

0.00 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1
0.10 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1
0.20 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1
0.30 A3 A3 A3 A3 A3 A3 A3 A3 A3 A3 A3
0.40 A3 A3 A3 A3 A3 A3 A3 A3 A3 A3 A3
0.50 A3 A3 A3 A3 A3 A3 A3 A3 A3 A2 A2
0.60 A3 A3 A3 A2 A2 A2 A2 A2 A2 A2 A2
0.70 A3 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2
0.80 A3 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2
0.90 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2
1.00 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2
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Figure 27. Sensitivity of the decision to risk tolerance and the fraction of tonnage headed to 

and from the upper reach.  

As discussed above, the maintenance dredging decision is sensitive to both 
the expected market demand (M) and the fraction of cargo transported to 
and from the upper reach. The sensitivity to these variables may depend 
upon the decision maker’s risk tolerance. Figure 28 explores how the 
decision might change for different values of these variables at two levels 
of risk aversion. Figure 28(a) shows results for a risk-neutral decision 
maker. For low levels of market demand (E[M] ≤ 7), no action (A0) is 
preferred unless a relatively large fraction of the tonnage is bound to and 
from the upper reach, in which case the status quo alternative (A3)  tends 
to be preferred. At higher levels of market demand (M ≥ 8), A1, A2, and A3 
are preferred, again depending upon what fraction of tonnage is bound for 
the Upper Reach. This pattern shows some sensitivity to risk aversion in 
21(b), as indicated by the expanded region over which A3 is preferred. 
However, this sensitivity to risk attitude seems relatively minor. 
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Expected Market Tonnage, E[M ] (Million tons)
5 6 7 8 9 10 11 12 13 14 15

0.00 A0 A0 A1 A1 A1 A1 A1 A1 A1 A1 A1
0.10 A0 A0 A0 A1 A1 A1 A1 A1 A1 A1 A1
0.20 A0 A0 A0 A1 A1 A1 A1 A1 A1 A1 A1
0.30 A0 A0 A0 A3 A3 A3 A3 A3 A2 A2 A2
0.40 A0 A0 A0 A3 A3 A3 A2 A2 A2 A2 A2
0.50 A0 A0 A0 A3 A3 A2 A2 A2 A2 A2 A2
0.60 A0 A0 A3 A3 A2 A2 A2 A2 A2 A2 A2
0.70 A0 A0 A3 A2 A2 A2 A2 A2 A2 A2 A2
0.80 A0 A0 A3 A2 A2 A2 A2 A2 A2 A2 A2
0.90 A0 A3 A2 A2 A2 A2 A2 A2 A2 A2 A2
1.00 A3 A3 A2 A2 A2 A2 A2 A2 A2 A2 A2
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(a) Sensitivity analysis for a risk-neutral decision maker, ρ = 1.0x107 

Expected Market Tonnage, E[M ] (Million tons)
5 6 7 8 9 10 11 12 13 14 15

0.00 A0 A0 A1 A1 A1 A1 A1 A1 A1 A1 A1
0.10 A0 A0 A0 A1 A1 A1 A1 A1 A1 A1 A1
0.20 A0 A0 A0 A1 A1 A1 A1 A1 A1 A1 A1
0.30 A0 A0 A0 A3 A3 A3 A3 A3 A3 A2 A2
0.40 A0 A0 A0 A3 A3 A3 A3 A2 A2 A2 A2
0.50 A0 A0 A0 A3 A3 A3 A2 A2 A2 A2 A2
0.60 A0 A0 A3 A3 A3 A2 A2 A2 A2 A2 A2
0.70 A0 A0 A3 A3 A2 A2 A2 A2 A2 A2 A2
0.80 A3 A3 A3 A2 A2 A2 A2 A2 A2 A2 A2
0.90 A3 A3 A3 A2 A2 A2 A2 A2 A2 A2 A2
1.00 A3 A3 A2 A2 A2 A2 A2 A2 A2 A2 A2
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(b) Sensitivity analysis for a risk-averse decision maker, ρ = 5.00 

Figure 28. Sensitivity of the decision to expected market tonnage and the fraction of tonnage 
headed to and from the upper reach for a risk-neutral decision maker (a) and a risk-averse 

decision maker (b).  

Sensitivity analysis and potential opportunity costs 

The sensitivity analyses described above show how the decision analysis 
might lead to different conclusions given different assumptions in the 
decision model and given different stakeholder values and beliefs. Those 
sensitivity analyses did not reveal any information about what opportunity 
costs might be incurred as a result of choosing a sub-optimal alternative. 
Understanding what the opportunity costs might be will suggest how 
much effort a decision maker should expend to avoid choosing a sub-
optimal alternative. For example, if the opportunity costs of choosing the 
enhanced compromise alternative (A2) instead of the status quo alterna-
tive (A3) are relatively low, it may not really matter whether the optimal 
alternative or the second-best alternative is chosen, since the potential 
opportunity costs are small.  

Opportunity costs can only be interpreted correctly with respect to fixed 
variables in the analysis. Although fixed variables should have been chosen 
because of the uncertainty about what value should be used for that 
variable, those variables may still be associated with some uncertainty. 
Opportunity costs are defined as the difference between the expected 
outcome of the chosen alternative and the expected outcome of the 
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alternative that minimizes expected shipping cost per ton, evaluated at the 
realized value of the fixed variable in question. Because the realized value 
of a variable cannot be known a priori, it is useful to think of these anal-
yses as revealing potential opportunity costs. In this example, potential 
opportunity costs are evaluated in Figure 29(a) with respect to the fraction 
of market demand bound to and from the upper reach and in Figure 29(b) 
for a unit dredging cost scaling parameter. These results are presented for 
a risk-neutral decision maker. The outcomes of the decision are expressed 
in unit shipping costs; therefore, the total potential opportunity costs in 
this example must be weighted by the expected market demand. For 
example, a difference of $1 in shipping cost per ton between a chosen 
alternative and an optimal alternative translates into a potential 
opportunity of $10 million.  

Figure 29(a) shows that, if the fraction of tonnage bound to and from the 
upper reach is held at its nominal value, 0.6, the enhanced compromise 
alternative (A2) minimizes the expected NPV of shipping cost per ton. 
Above the nominal value of 0.6, there are no potential opportunity costs 
because A2 remains the preferred alternative. If the fraction of tonnage 
bound to and from the upper reach drops below about 0.45, the optimal 
alternative switches over to the status quo alternative (A3). If the fraction 
of tonnage bound to and from the upper reach drops below about 0.2, the 
optimal alternative switches over to the lower reach-only alternative (A1). 
The potential opportunity cost of choosing A2 is the difference between 
the shipping cost per ton under A2 and the shipping cost per ton under the 
optimal alternative evaluated at the realized fraction of tonnage bound to 
and from the upper reach. These results suggest that, unless the nominal 
fraction of tonnage bound to and from the upper reach is over-estimated 
by more than 0.15, there will be no potential opportunity costs as a result 
of choosing the enhanced compromise alternative (A2). 
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Figure 29. Sensitivity analysis and evaluation of potential opportunity costs of the decision to 

the unit cost of dredging showing the opportunity cost of choosing A2 over A3 and then 
realizing unit dredging costs that are twice as high as expected because of unexpected fuel 

price increases. 
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The sensitivity analysis above showed that the decision is sensitive to the 
unit cost of dredging in each reach. These two variables are partially 
independent. Therefore, this sensitivity analysis and evaluation potential 
opportunity costs is with respect to a scaling parameter unit dredging 
costs. Changes in the scaling parameter imply proportional changes in unit 
dredging cost. Results of this analysis can be seen in Figure 29, which 
shows that A2 minimizes the expected shipping cost per ton when the ratio 
of dredging cost to nominal dredging cost is 1.0. If the unit cost of dredg-
ing is below 1.0, A2 remains the preferred alternative. However, if the unit 
cost of dredging is higher than the nominal value, the status quo alterna-
tive (A3) minimizes the expected outcome for ratios between 1.2 and about 
1.7. Above ratios of 1.7, the no-action alternative (A0) minimizes the 
expected outcome of the decision.  

Over- or under-estimating the unit dredging costs in the decision model 
could lead the decision maker to choose a sub-optimal alternative. This 
would lead to opportunity costs. For example, the opportunity cost of 
choosing A2 instead of A0 and then realizing unit dredging costs will be 
twice as high as expected is $3.14 per ton, which translates into a total 
opportunity cost of $314 million, given the expected market demand of 
10 million. There appear to be no potential opportunity costs as long as 
unit dredging costs stay below 125% of the nominal unit costs used in the 
decision model. As with other forms of sensitivity analyses, assessments of 
potential opportunity costs should build a decision maker’s confidence in 
the results of a decision analysis by creating familiarity with the decision 
landscape. However, if the decision is overly sensitive to the variables of 
interest or the potential opportunity costs are too high, these analyses will 
reveal where additional work may be needed to improve the decision 
model or clarify which decision alternatives might be preferred by the 
decision maker. 

Summary of the Town Harbor example 

The Town Harbor dredging example has illustrated the process of decision 
making under uncertainty and demonstrated some of the principles and 
techniques that were discussed in the main body of the report. Specifically, 
this example demonstrates the following procedures for decision making 
under uncertainty: 

1. Frame the decision problem. The decision problem is framed by 
identifying a decision objective and decision alternatives. In this example, 
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the objective is to maximize expected utility during the dredging cycle. 
Assuming risk neutrality, this is the same as minimizing shipping cost per 
ton. Four decision alternatives are considered. 

2. Identify sources of uncertainty. Three key sources of uncertainty are 
identified as relevant to this decision. They include the shoaling rate in the 
lower reach, the shoaling rate in the upper reach, and market demand, 
which is defined as expected tonnage during the dredging cycle. 

3. Create a decision model. A decision tree is developed to model the decision 
problem. Each of the uncertainties is discretized to three possible levels. 
Twenty-seven possible outcomes for each alternative are enumerated. The 
probability of each uncertain variable state is obtained by discretizing a 
continuous probability distribution that characterizes uncertainty in the 
continuous uncertain variable.  

4. Evaluate the potential outcomes. The potential outcomes and their 
probabilities are evaluated for each alternative and risk profiles are 
constructed. The example compares risk profiles for a risk-neutral decision 
maker with risk profiles for a risk-averse decision maker.  

5. Conduct a sensitivity analysis. Sensitivity analysis is used to evaluate the 
sensitivity of the decision. For individual decision makers, the sensitivity 
analysis revolves around fixed variables in the decision model. For 
collaborative decision makers, the sensitivity analysis may also revolve 
around value parameters and subjective probability assessments. Potential 
opportunity costs are evaluated to assess the potential costs of choosing a 
sub-optimal alternative. 
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8 Implementing Decision Making under 
Uncertainty in Practice 

The concepts and approaches presented within this report have been 
applied to a range of decision problems and have been taught as a part of 
engineering, economics and management science curricular for decades 
(e.g., Howard et al. 1972; Hobbs et al. 1997; Lund 2008). Why have these 
approaches not been more widely adopted in government agencies and 
other organizations confronting the challenges of decision making under 
uncertainty?  Lund (2008) attributes this gap to institutional and indivi-
dual reluctance to change; skepticism toward unfamiliar concepts; the role 
that politics plays in decision making; the perception that the methods are 
too difficult or resource intensive to implement; and fears about having 
too much, too little, or inappropriate data. Barriers to the adoption of 
decision analysis methods in USACE can be overcome by assisting analysts 
to become more familiar with the methods and concepts and encouraging 
their use in agency decisions.  

There is no substitute for gaining hands-on experience solving decision 
problems. Useful guidelines for organizing and implementing probabilistic 
decision analyses may assist decision makers to gain experience with 
decision making under uncertainty methods. These include:  

• Incorporate decision analysis from the very earliest stages of the 
project. The efficacy of probabilistic decision analysis often depends 
upon the initial framing of the decision problem, which outlines the 
decision objectives and alternatives. The framing of a decision problem 
will influence choices about what uncertainties to address and what 
kinds of data to collect. What data are collected and how those data are 
collected will constrain the type of analysis that can be performed. 
Therefore, the decision to use probabilistic decision analysis methods 
should be made as soon as possible in the decision-making process.  

• Scale the investments in analysis to match the decision. As 
demonstrated in this report, probabilistic decision methods can be 
implemented effectively without major investments. Generally, the 
level of investment in a probabilistic decision analysis should reflect 
the importance of the decision (Lund 2008). Larger investments in 
decision analysis are justified by higher opportunity costs.  
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• Use a tiered, iterative approach to decision analysis. A tiered 
approach starts with a screening level analysis that provides a 
preliminary sketch of the decision problem using available data or 
rough approximations. The active thinking that is required to do a 
thoughtful screening-level analysis will assist the decision maker to 
flush out alternatives, adapt the decision frame, and identify decision-
relevant variables and uncertainties. At the screening level, it is the 
process rather than the results that are most important. Results of the 
screening-level analysis can also provide an indication of opportunity 
costs and whether additional analysis may be justified. This sets the 
decision maker up for another iteration of the analysis incorporating 
what was learned in the previous stage, including any re-framing of the 
decision problem and any improvements in the quality of data used in 
the analysis. 

• Stop the analysis when there is sufficient confidence to make the 
decision. It is possible for the analysis of a decision problem to 
continue beyond the point that it has value for the decision maker. A 
decision analysis should continue only until the decision maker has the 
confidence he needs to make a decision. There is no uniform test for 
determining when that point has been reached. Confidence in an 
analysis is gained through critical evaluation of the information and 
methods used in modeling the decision and through sensitivity 
analysis. Each decision maker will reach this point of confidence at a 
different point in the deliberation process, depending upon the extent 
of his insight into the decision problem and his personality.  

The guidelines described here anticipate and encourage experimentation 
in solving difficult decision problems. An advantage of allowing decision 
makers to experiment is that it is likely to spur innovation and help 
decision makers to identify problem- and site-specific issues that are 
relevant to the decisions they make. However, experimentation may tend 
to generate a fair number of analyses that are poorly done. The advantage 
of canned analytical approaches is that they encourage consistency across 
the agency. As more experience is gained with the application of decision 
analysis and methods of applying these techniques to agency decisions are 
refined, a transition to prescribed decision methods should be possible.  
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Do risk and decision analysis support USACE priorities and 
requirements? 

Probabilistic risk and decision analysis methods, as described in this 
report, satisfy USACE requirements for decision making. The USACE 
Campaign Plan repeatedly calls for the use of risk-based and risk-informed 
approaches to guide investment decisions and risk management actions. 
Two notable examples of this are: 

• Objective 3b: Improve resilience and lifecycle investment in 
critical infrastructure. USACE will improve resiliency of critical 
infrastructure to reduce risks to critical water resources and infra-
structure critical to DoD from an all hazards systems approach, to 
include hostile activity. Improved resilience of critical infrastructure 
ensures availability of networked assets critical to the nation. Invest-
ment decisions must be risk-based and meet the priorities of the 
component programs… 

• Objective 3c: Deliver reliable infrastructure using a risk-
informed asset management strategy. USACE will deliver a 
reliable infrastructure to ensure these assets continue to provide value 
to the Nation and meet expected levels of service while mitigating risk. 
Increased reliability will be achieved by developing a strategy, which 
includes an integrated national plan for assessing the infrastructure 
and an investment strategy for operation, maintenance, and enhance-
ments to improve reliability, minimize risk, and meet projected 
infrastructure demands. 

The needs and priorities reflected in the Campaign Plan are a direct result 
of the recognition that in order to deliver reliable support to the Nation 
and Armed Forces, analytical and decision-making processes must 
explicitly address the risks and uncertainties associated with decisions and 
actions. 

Risk and decision analysis can be implemented successfully through 
hard work.  

Despite the desire to have it otherwise, there is no quick and easy path to 
risk-informed decision making. The approaches described within this 
report can be used to support decision-making activities and enhance the 
credibility and reliability of agency decisions. However, there are many 
challenges to applying these approaches, all of which can be overcome. A 
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few of the challenges that are likely to confront those who apply these 
methods include: 

• Decision framing: Although probabilistic risk and decision analysis 
methods can usually be applied without necessarily altering the way 
that problems have traditionally been framed within the agency, appli-
cation of rational decision theory may sometimes suggest deviations 
from the way that problems have been framed in the past. A transition 
to the use of probabilistic risk and decision analysis methods will be 
facilitated by opening one’s mind to new ways of thinking about 
decision problems. 

• Ambiguity: Decision theory and decision analysis assume a single 
decision maker who knows his objectives and preferences or values. 
Usually, however, the analyst is not the decision maker and there is 
ambiguity about objectives and preferences. For example, this may 
manifest itself in not knowing what objective function to use. This 
report has discussed sensitivity analysis as a way of overcoming this 
type of ambiguity. Sometimes there is more than one decision maker or 
there are multiple stakeholders. If so, the presence of different objec-
tives or values may complicate an analysis. Normative economic and 
decision theory is fuzzy about how such groups should solve decision 
problems, or what choices are optimal in that situation. A practical 
decision analysis approach is to treat the group as a single decision 
maker and conduct sensitivity analysis on the parameters that describe 
decision maker’s preferences parametrically. 

• Multi-objective problems: Many agency problems involve multiple 
objectives. For example, agency personnel routinely address the need 
to make trade-offs among economic, human safety, and environmental 
outcomes. More often than not, these trade-offs are not considered 
explicitly. While not required for decision making under uncertainty, 
an openness to consider multiple objectives explicitly when framing 
decisions may help to resolve some of the ambiguities decision makers 
face. 

• Politics: Policy is about how a pie should be distributed. Politics is 
about determining who gets the biggest piece. While policy can inform 
the decision process by clarifying decision objectives, politics will tend 
to contaminate the decision process and be an impediment to rational 
decision making if participants have individual agendas or priorities. 
Politics can seep into collaborative decision processes; for example, 
those that involve multiple levels of government (federal, state, and 
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local) or multiple agencies. The decision-making methods discussed in 
this report assume that analysts and decision makers are disinterested 
and objective participants in the process and there is a common 
objective. Decision analysis methods may be difficult to implement in a 
decision environment in which politics plays a significant role and 
participants are working to advance their own interests or the interests 
of the organizations that they represent. 

• Iterative vs. streamlined decision processes:  Streamlined decision-
making processes that are implemented on tight schedules create the 
aura of efficiency. However, it is difficult to engage in an iterative 
decision process when working in such an environment because one 
lacks the freedom to explore the decision problem. This is not to say 
that probabilistic decision analysis cannot be applied in streamlined 
environments. Rather, if exploration of the decision problem is 
important - as would be the case in a transition toward the 
implementation of probabilistic decision methods in operations or 
planning - decision analysts may need freedom from constraints that 
might otherwise thwart an exploration of the decision problem. 

Addressing these challenges is beyond the scope of this report. However, 
the authors propose that the concepts and approaches described offer the 
means for facilitating open and explicit exchange of ideas on these and 
other challenges involved in making risk-informed decisions. 

Advancing analytical and decision-making practices 

Advancing practices in USACE to bring analytical and decision-making 
practices in line with probabilistic risk and decision analysis principles will 
require commitment, at all levels, to the following principles: 

• Risk-informed decision making is based upon a comprehensive 
analysis of risks and uncertainties. An analysis is comprehensive when 
it is responsive to the broad range of issues, concerns, and outcomes of 
interest to decision makers and stakeholders interacting through the 
deliberative process that informs decisions. Uncertainties that can 
affect the decision must be respected and, to an extent that it is 
consistent with the scope of decision making, their influence on 
outcomes must be quantified through rigorous analysis. Explicit 
consideration and analysis of uncertainty requires a commitment to 
transparency in the analytic-deliberative process as well as investments 
in time and other resources. 
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• Deliberation is essential to decision making under uncertainty. 
Effective communication about risks and uncertainties within USACE 
and with stakeholders and the public are keys to successful 
deliberation. While the Corps has made substantial progress in recent 
years in the areas of outreach and stakeholder engagement, 
implementing risk-informed decision making will require new 
commitments, standards, and approaches for the conduct of 
deliberation. It is arguably as important to give careful attention, 
through analysis, to the values, risk attitudes and perceptions germane 
to the decision problem under consideration, as it is to give attention to 
the science and engineering of the risk. 

• Advancing practice requires a commitment to change, 
experimentation, and learning. Change is rarely easy. In fact, when it 
comes to changing long-held practices, organizational and individual 
resistance to change is to be expected. For these reasons, the 
commitment to advancing practices to bring them in line with risk-
informed decision making must be a long-term commitment. USACE 
must be willing to experiment with new approaches, learn from those 
experiences, and carefully consider the lessons learned (both the 
failures and successes) as new standards of practice are established. 

Risk-informed decision making offers the means for developing more 
resilient systems that provide long-term risk reduction benefits to the 
Nation. A commitment to developing and implementing such an approach 
will produce a stronger and more capable organization, better decisions, 
and superior service to the country.  
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