
PURPOSE: Benefits of restoring
riverine backwaters using weirs or
other types of water control struc-
tures are evaluated. This approach
allows: (a) site-specific charac-
terization of backwater fish assem-
blages; (b) development of
quantitative models of habitat qual-
ity; and (c) incremental estimation
of habitat benefits of weirs with dif-
ferent crest heights. The technique
is described within the context of
two case histories for backwaters in
the lower Mississippi River Basin
based on empirical relationships be-
tween fish and habitat variables.

BACKGROUND: Seasonally inundated backwaters are inhabited by numerous fish species of
diverse form and biology. Backwaters are particularly important as spawning and rearing grounds
for fishes. However, premature or excessive dewatering of backwaters can occur as a result of
channelization, channel incision, or water diversion. Low water limits availability of spawning and
rearing areas in the littoral zone, contributes to hypoxia and high temperatures in isolated pools,
concentrates fishes, and may result in fish kills. Pooling water, however, increases extent and
duration of lake margins, allows structurally complex microhabitats to form, and increases the area
of open water, enhancing reproduction of fish and other aquatic organisms.

Fixed-crest weirs, installed at the outlets of impacted backwaters, offer a low-cost (i.e., usually less
than $100,000 for construction) means of aquatic restoration, but no technique has been established
for quantifying fishery benefits of such structures. Aquatic habitats increase in acreage with weir
elevation, but so do construction costs, and habitat quality may vary in noncontinuous patterns. To
maximize benefits per cost, it is necessary to develop quantitative models that relate fish habitat to
predictable hydrologic conditions (e.g., water depth, river stage) created by the weir.

SAMPLING YOUNG-OF-YEAR FISHES AND THEIR HABITAT: Early life stages of fish
are vulnerable to backwater degradation because they have limited motility to avoid predators and
declining water quality during low water conditions. Year-class strength of fishes is usually
established before the end of a cohort’s first growing season; thus, high mortality of eggs and larvae
may result in a subsequent decrease in adult recruitment (Diana 1995). For these reasons, backwater

ERDC TN-EMRRP-EI-01
July 2000

Quantifying Habitat Benefits
of Restored Backwaters

Dewatering of backwaters during low river stages can be
prevented by installing weirs at the outlet channel

1



restoration should greatly benefit larval and recently spawned juvenile fishes (collectively referred
to as young-of-year).

Backwater drying is problematic, especially for those fishes of the lower Mississippi River basin
that continue to spawn and rear throughout summer and even into early autumn, a time when water
levels are typically low. Three groups of fish often predominate in backwaters and they represent
a comprehensive subset of the biological (e.g., different reproductive strategies) and socioeconomic
characteristics of backwater fish communities (Hoover and Killgore 1998a): sunfishes, suckers, and
silversides. Sunfishes (Centrarchidae:Lepomisspp. [true sunfishes or brim] andPomoxisspp.
[crappies]) are usually permanent residents of backwaters that excavate and defend nests throughout
the littoral zone, and rear in shallow areas during spring and summer. Suckers (Catostomidae:
Ictiobusspp. [buffalo] and other taxa) are main channel species that ascend backwaters to randomly
broadcast their demersal, adhesive eggs in temporarily flooded littoral zones during spring. Juvenile
and adult silversides (Atherinidae:Menidia beryllina, Labidesthes sicculus) transfer energy from
lower levels of aquatic food webs (i.e., zooplankton) to higher levels (i.e., piscivorous fishes) by
serving as the principal forage for black basses and other predators. Benefits of backwater
restoration are generally evaluated with one or more of these groups.

Nonempirical applications of habitat-evaluation techniques that rely on presumed fish-habitat
relationships may not be applicable in a given ecosystem. Thus, we sample young-of-year fishes
with floating Plexiglas light traps (Killgore and Morgan 1994) and use these data to develop
quantitative models of fish-habitat relationships. Overnight sets of traps are stratified among all
apparent macrohabitats and baited with yellow chemical light sticks. This gear-type and method of
deployment are known to collect most taxa of fishes in numbers proportional to their abundance
among water bodies and among habitat types within individual water bodies. Traps were recovered
the following morning and fishes were preserved. Prior to recovery, water depth and distance from
shore were measured at each trap. At each location, channel width was recorded and water depth
was measured along a horizontal transect. Turbidity, water temperature, conductivity, pH, and
dissolved oxygen were also recorded.

Largemouth bass (left) and paddlefish (right) are two of many species that benefit
from backwater restoration
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CONCEPTUAL FRAMEWORK FOR MODEL DEVELOPMENT: Benefits are calculated
using the Habitat Evaluation Procedure (HEP), which expresses habitat quantity as habitat area
weighted by habitat quality (U.S. Fish and Wildlife Service (USFWS) 1980):

Habitat Units = Habitat Area× Habitat Suitability Index

Empirical (curvilinear) relationships between fish abundance and physical habitat may be used to
objectively identify significant habitat variables and quantify habitat value or suitability (HSI). This
approach requires three assumptions:

• Young-of-year fish abundance is a positive, direct expression of habitat quality.
• Relevant habitat variables, and ranges for those variables, are included in the analysis.
• Statistical correlation based on empirical data indicate causal relationships between

habitat variables and young-of-year fish abundance.

Cumulatively, these assumptions indicate that spawning success (chronology and number of young)
may be modified and enhanced by altering the hydrologic regime of backwaters. They also indicate
that fish respond to hydrology at varying scales: microhabitat (e.g., point measurements of depth),
macrohabitat (e.g., channel width), or ecosystem (e.g., river stage).

Relevant habitat variables are identified with Pearson product moment correlation coefficients and
multiple regression analysis (SAS Institute 1989). These techniques provide quantitative models
of the relationship between one or more independent (habitat) variables and a single dependent (fish
abundance) variable. Regression models are expressed generically as:

Fish abundance = b + m1Habitat Correlate1 + m2Habitat Correlate2...etc.

in which habitat correlates are parameters significantly correlated with fish abundance, and b
(y-intercept) and m (slope) are constants. The model allows abundance of fish (number/light-trap)
to be predicted for specific values of habitat variables. Regression equations were used as a formula
to calculate HSI’s by dividing a maximum value into the predicted value of the dependent variable:
i.e., number of fish calculated for given value(s) of primary habitat correlate(s).

b + m1Habitat Correlate1 + m2Habitat Correlate2...etc.
HSI =

Maximum fish abundance

The above equation standardizes calculated values of fish abundance to a scale ranging from 0.00
(no habitat value) to 1.00 (maximum habitat value). Maximum fish abundance may be either an
observed value (i.e., highest value recorded for that study or in a similar study) or may be a predicted
value (based on extreme values observed for hydrologic variables). HSI is multiplied times area of
water to obtain a weighted measure of functional habitat area, or Habitat Units (HU’s). Calculations
are incremental, with increments corresponding to specific elevations planned for different weir
alternatives.

Multiple regression equations function similarly to HSI “blue book” equations, by providing
measures of habitat quality based on multiple habitat variables. Multiple regression equations,
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however, offer several refinements, because they are empirical and do not entail a priori decisions
regarding relationships between habitat parameters and fishes, thus reducing institutional bias.
Multiple regression statistics allow the elimination of irrelevant variables from the final predictive
model and quantification of the degree of correlation between habitat variables and the fish
community (via correlation coefficients and probability levels).

RESTORATION OF LAKE WHITTINGTON – A MISSISSIPPI RIVER OXBOW LAKE

Background. Lake Whittington is an oxbow lake of the Mississippi River near River km 926. It
was formed in 1937 by the U.S. Army Corps of Engineers after completion of Caulk Island Cutoff.
The lake is relatively deep at some locations (greater than 20 ft) and has been commercially and
recreationally fished for more than 50 years. It now experiences declining fisheries, presumably
because of progressive seasonal dewatering that reduces availability of spawning area in littoral
zones and concentrates fish, thereby increasing predation. During high and intermediate stages on
the Mississippi River, the surface elevation of Lake Whittington is controlled by the Mississippi
River via an inlet/outlet channel and can exceed 30 ft in depth. Bank-full surface area of the lake
is 3,000 acres. The bottom of the inlet/outlet channel and natural obstructions in the lake control
its surface elevation during low stages of the Mississippi River. During low stages, the lake is
dewatered, isolated from the river, and dries partially to form three separate pools consisting of
approximately 1,000 acres. The lake typically dewaters during late summer and may remain in this
condition through late autumn.

Lake Whittington was compared to two nearby oxbow lakes of the Mississippi delta, north of
Greenville, MS (Hoover, Killgore, and Walker 1998): Lakes Beulah and Bolivar. A weir was
constructed at the outlet of Lake Beulah in 1955, thus representing a restored backwater. Lakes
Whittington and Beulah occur on the Mississippi River floodplain, riverward of mainline levees,
and are flooded seasonally (Jan-Apr). Conversely, Lake Bolivar is permanently isolated from the
Mississippi River by a mainline levee constructed in the 1930’s and is shallow (less than 6 ft). Each
lake was sampled once during late spring-early summer.

Habitat Suitability Index Model. Preliminary models for sunfishes and silversides, developed
by multiple regression, indicated mean depth as the primary (negative) correlate and turbidity as
the secondary (positive) correlate. Abundance of both groups was highest at some intermediate
depth: 4 ft for sunfish, 20 ft for silversides. Consequently, regressions were recalculated so that
depths corresponding to modal fish abundance were used as a starting point for two separate models
for each species: a positive regression from a minimum depth to depth of modal abundance, and a
negative regression from depth of modal abundance to maximum depth of occurrence (Figure 1).
Minimum depths were approximately 2 and 4 ft for sunfish and silversides, respectively, either
because no individuals were collected in shallow water or abundance was extremely low. Thus, we
assumed an HSI of 0.00 for depths less than the minimum values. Since turbidity was not expected
to change as a result of the project, “second-generation” models did not include that variable.
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Linear regressions were standardized by dividing by maximum predicted fish abundance:

21.699 - 0.516 (Mean depth)
HSI Sunfish > 4 feet= 19.6

-31.608 + 14.528 (Mean depth)
HSI Sunfish 2-4 feet= 26.5

122.724 - 2.467 (Mean depth)
HSI Silversides > 20 feet= 73.4

-29.25 + 7.312 (Mean depth)
HSI Silversides 4-20 feet= 117.0

Habitat Benefits. The existing 1,000-acre pool has a weighted average water depth of approxi-
mately 6 ft. Lowest weir elevation evaluated will create a permanent pool of 2,380 acres with a
weighted average water depth of 9 ft; the highest weir elevation evaluated will maintain a minimum

Figure. 1. Habitat suitability index curves for young-of-year fishes in Lake Whittington, MS-AR. Equations
to describe these relationships can be developed using two separate linear regression
models for each species, as described in the text, or curvilinear functions (e.g., polynomial,
exponential)
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of 2,990 acres and weighted average water depth of approximately 15 ft. Shallow water, 3-9 ft,
predominates under existing conditions, so sunfish habitat is relatively high (568 HU’s) compared
with that of silversides (160 HU’s). At the lowest weir elevation, substantial increases in shallow
and moderate depths, 12-24 ft, occur and there are correspondingly substantial increases in habitat
of both species. With successively increasing weir elevations, however, shallow water persists or
increases slightly but moderately deep water increases linearly. As a result, sunfish habitat
asymptotes at an intermediate weir elevation and silverside habitat increases linearly. Average gains
(between the two taxa) show that for weir elevations greater than 112.5 ft, incremental gains in
average HU’s decrease from 72 to 29 percent (Figure 2).

Cost-Benefits and Weir Height. Estimated average annual cost of weirs, based on a 50-year
life of project, ranged from $84,000 (110.0-ft elevation) to $ 136,000 (119.5-ft elevation) (U.S.
Army Corps of Engineers (USACE) 1996). For each alternative, incremental costs (i.e., cost for a
given alternative - cost for the next lowest alternative) were divided by the incremental gain of
average sunfish-silverside HU (i.e., gained HU’s for a given alternative - gained HU’s for the next
lowest alternative). This resulted in incremental average cost per HU gained (Figure 2). Cost was
lower ($45.45/HU) for a weir elevation of 112.5 ft than for all other alternatives ($76.56 to
$119.27/HU). The 112.5-ft weir elevation was selected by the Vicksburg District as the most
cost-effective alternative.

Figure 2. Cost benefit analysis for a fixed crest weir at Lake Whittington, MS-AR: incremental difference in
cost per incremental difference in habitat units gained
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RESTORATION OF LAKE GEORGE – A MISSISSIPPI DELTA BACKWATER

Background. Lake George, and its principal tributary, Panther Creek, constitute an extensive
backwater of the lower Big Sunflower River in the Mississippi Delta. This backwater system floods
annually, during spring, when river elevations may exceed 85 ft National Geodetic Vertical Datum
(NGVD). During this period mid-channel depths are 15-20 ft, and channel widths exceed 500 ft. Low
water in the Big Sunflower River occurs at some time during the period June through November.
River elevations may be less than 70.0 ft NGVD, which is the elevation of lake bottom at its
inlet/outlet. As a result, the lake becomes dewatered. During this period, depths in the backwater
may be less than 1 ft, with channel widths less than 50 ft. When dewatering is pronounced or
prolonged, the upper reach of Lake George dries or is reduced to a series of small, stagnant, isolated
pools.

Habitat Suitability Index Model. The lake was sampled five times during spring and summer.
Fish habitat was analyzed with a subset of fish community data. Shads, common carp, and western
mosquitofish were excluded from analysis. These species predominate numerically in backwater
systems and reservoirs but are ubiquitous, invasive, habitat generalists, and as such do not represent
the environmental requirements of indigenous, obligate wetland species (Hoover and Killgore
1998a). Consequently, the response variable was total number of larvae and young-of-year
juveniles exclusive of these fishes. Remaining fishes consisted of 10 taxa, 90 percent of which
were comprised of 3 taxa: buffalo, black and white crappie, andLepomissunfishes. For correlative
analyses, fish and physical habitat data were log-transformed.

Traditional least squares regression models were not statistically significant or highly correlative
due to the overwhelming numerical domination by shad and mosquitofish and by exports of late
spawners from the backwater during dewatering, both of which obscured fish habitat relationships.
However, bivariate plots indicated that there was an increasing number of non-abundant fishes
associated with higher river stages (Figure 3). The technique of 90th quantile regressions was
recently recommended for “wedge-shaped” data sets of fish standing stocks that depart from patterns
of central tendency; i.e., those data sets showing an increasing and increasingly variable fish density
along an environmental gradient (Terrell et al. 1996). Thus, the observed 90th quantile value for
standardized fish abundance (dependent variable) was determined over the range of river stages
(independent variable) sampled. These data, stage and standardized fish abundance at that stage,
were used to generate a predictive regression model for interpolating HSI at any river stage from
67- 87 ft NGVD. HSI’s represent upper limits on carrying capacity of an organism, or group of
organisms; therefore, this technique was adapted as a conservative measure of expressing habitat
quality of backwaters as rearing habitat. Standardized fish abundance for HSI model development
was calculated as the 90th quantile value of a log-transformed number of fishes for a specific river
stage divided by the maximum 90th quantile value of log-transformed number of fishes for any
river stage.

Minimal larval densities were observed at river stage 69.6 ft, maximum larval densities at stage
84.8 ft NGVD. Assuming habitat quality asymptotes at higher stages, extrapolated down to an
elevation of 67.2 at which HSI = 0.00, a regression model can be calculated based on observed fish
abundance at the three lower stages:
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-6.384 + 0.095(Stage,ft)
HSI  =

1.748

Statistical significance should not be inferred for a regression calculated from only three points, but
the correlation coefficient for this model is high ( r = 0.996), and predicted values for HSI differ
from observed values of standardized fish abundance by less than 0.05. Abundance of fishes in
individual light traps at any stage was highly variable, but many approached or exceeded values
represented by the model. Consequently, the authors believe that HSI values are conservatively
low estimates of habitat value of the Lake George system to recently spawned fishes.

Habitat Benefits. Monthly acres of water, based on river stages ranging from 70-90 ft, were
estimated from a stage-area table and HU’s calculated for four different weir elevations: 75, 76.5,
78, and 80 ft NGVD. Habitat units increased for all weirs during the low-water period of
July-November (Figure 4); the weir with the highest elevation ( 80 ft) also created habitat outside
this period, i.e., December-February (Hoover and Killgore 1998b). Habitat gains for the entire
ecosystem, per month, during this time were relatively small (0-60 percent for the entire system)
compared with those during the critical low-water period (202-845 percent) reflecting lower
likelihood of fish spawning during the winter months.

Figure 3. Habitat suitability index model for young-of-year fishes in Lake George, MS. Squares indicate
90-percent quantile and circles are standardized fish abundance of individual collections.
Multiple observations of zero abundance not shown
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Cost Benefits and Weir Height. Estimated annual cost of weirs, based on a 50-year life of
project, ranged from $81,000 (75-ft elevation) to $86,000 (80-ft elevation) (USACE 1999). For
each alternative, total cost was divided by gained HU’s. This resulted in cost per HU gained for
each alternative (Figure 4). Cost was lower ($53/HU) for a weir elevation of 80 ft than for any other
alternative ($102-240/HU). The 80-ft weir elevation was selected by the Vicksburg District as the
most cost-effective measure.

SUMMARY: Backwaters are important nurseries for riverine fishes, but simple, empirical tech-
niques for quantifying their value prior to and following habitat restoration have not been established.
Plexiglas light-traps effectively sample young-of-year fish assemblages in specific habitats of
backwaters and can, therefore, be used to provide data for a wide variety of sampling regimes. Case
histories are presented from the lower Mississippi River Basin demonstrating that light traps may
be deployed once, over an extensive range of habitats, or repeatedly within a narrower range of
habitats, to provide data that adequately describe relationships between hydrologic conditions
(habitat or stage) and fish abundance. Statistical models are readily developed between river stage,
or individual habitat parameters, and fishery response variables. These models are easily modified
for use in traditional habitat assessment techniques, such as Habitat Evaluation Procedure (HEP)
and cost-benefit analyses. Unlike “off-the-shelf” habitat models, they represent fish assemblages
and physical habitat conditions distinctive to individual water bodies.

Figure 4. Cost benefit analysis for a fixed crest weir at Lake George, MS: incremental cost per habitat unit
gained
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POINTS OF CONTACT: For additional information, contact Dr. Jan J. Hoover (601-634-3996,
hooverj@wes.army.mil) and Dr. K. Jack Killgore (601-634-3397,killgok@wes.army.mil), or the
Program Manager of the Ecosystem Management and Restoration Research Program, Dr. Russell
F. Theriot (601-634-2733,therior@wes.army.mil). This technical note should be cited as follows:

Hoover, J. J., Killgore, K. J., and Young, G. L. (2000). “Quantifying habitat benefits of
restored backwaters,”EMRRP Technical Notes Collection(ERDC TN-EMRRP-EI-01),
U.S. Army Engineer Research and Development Center, Vicksburg, MS.
www.wes.army.mil/el/emrrp
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